Artykuły w czasopismach na temat „Segmented filamentous bacteria (SFB)”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Segmented filamentous bacteria (SFB)”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Meyerholz, David K., Thomas J. Stabel i Norman F. Cheville. "Segmented Filamentous Bacteria Interact with Intraepithelial Mononuclear Cells". Infection and Immunity 70, nr 6 (czerwiec 2002): 3277–80. http://dx.doi.org/10.1128/iai.70.6.3277-3280.2002.
Pełny tekst źródłaWilmore, Joel, Gregory Sonnenberg, David Artis i David Allman. "Segmented filamentous bacteria induce systemic IgA responses to commensal bacteria (MUC4P.854)". Journal of Immunology 192, nr 1_Supplement (1.05.2014): 133.30. http://dx.doi.org/10.4049/jimmunol.192.supp.133.30.
Pełny tekst źródłaSnel, J., C. C. Hermsen, H. J. Smits, N. A. Bos, WMC Eling, J. J. Cebra i P. J. Heidt. "Interactions between gut-associated lymphoid tissue and colonization levels of indigenous, segmented, filamentous bacteria in the small intestine of mice". Canadian Journal of Microbiology 44, nr 12 (1.12.1998): 1177–82. http://dx.doi.org/10.1139/w98-122.
Pełny tekst źródłaGrześkowiak, Łukasz, Beatriz Martínez-Vallespín, Jürgen Zentek i Wilfried Vahjen. "A Preliminary Survey of the Distribution of Segmented Filamentous Bacteria in the Porcine Gastrointestinal Tract". Current Microbiology 78, nr 10 (3.09.2021): 3757–61. http://dx.doi.org/10.1007/s00284-021-02636-0.
Pełny tekst źródłaMetwaly, A., J. Calasan, N. Waldschmitt, S. Khaloian, D. Häcker, M. Ahmed, L. F. Butto i in. "P059 Diet controls segmented filamentous bacteria in driving Crohn’s disease-like inflammation in TNFdeltaARE mice". Journal of Crohn's and Colitis 16, Supplement_1 (1.01.2022): i168. http://dx.doi.org/10.1093/ecco-jcc/jjab232.188.
Pełny tekst źródłaSano, Teruyuki, Yi Yang, Gretchen Diehl, Alessandra Chen, Daniel H. Kaplan i Dan R. Littman. "Multi-step Th17 differentiation in response to segmented filamentous bacteria in the mouse intestine". Journal of Immunology 196, nr 1_Supplement (1.05.2016): 67.1. http://dx.doi.org/10.4049/jimmunol.196.supp.67.1.
Pełny tekst źródłaKumar, Pawan, Jeremy McAleer, Waleed Elsegeiny, Rachel Armentrout, Derek Pociask i Jay Kolls. "Hyper Th17 responses in IL-17R knockout is regulated by segmented filamentous bacteria (SFB) (MUC4P.857)". Journal of Immunology 192, nr 1_Supplement (1.05.2014): 133.33. http://dx.doi.org/10.4049/jimmunol.192.supp.133.33.
Pełny tekst źródłaUmesaki, Yoshinori, Hiromi Setoyama, Satoshi Matsumoto, Akemi Imaoka i Kikuji Itoh. "Differential Roles of Segmented Filamentous Bacteria and Clostridia in Development of the Intestinal Immune System". Infection and Immunity 67, nr 7 (1.07.1999): 3504–11. http://dx.doi.org/10.1128/iai.67.7.3504-3511.1999.
Pełny tekst źródłaTan, Tze Guan, Esen Sefik, Naama Geva-Zatorsky, Lindsay Kua, Debdut Naskar, Fei Teng, Lesley Pasman i in. "Identifying species of symbiont bacteria from the human gut that, alone, can induce intestinal Th17 cells in mice". Proceedings of the National Academy of Sciences 113, nr 50 (23.11.2016): E8141—E8150. http://dx.doi.org/10.1073/pnas.1617460113.
Pełny tekst źródłaKlaasen, H. L. B. M., J. P. Koopman, M. E. Van Den Brink, M. H. Bakker, F. G. J. Poelma i A. C. Beynen. "Intestinal, segmented, filamentous bacteria in a wide range of vertebrate species". Laboratory Animals 27, nr 2 (1.04.1993): 141–50. http://dx.doi.org/10.1258/002367793780810441.
Pełny tekst źródłaKang, Byunghyun, Eun-Do Kim, Bong-Hyun Kim, Tomohiro Tomachi, Jianping He i Brian L. Kelsall. "Segmented filamentous bacteria (SFB) drives enhanced T cell-dependent IgA and IgG2b responses in Peyer’s patches". Journal of Immunology 210, nr 1_Supplement (1.05.2023): 218.10. http://dx.doi.org/10.4049/jimmunol.210.supp.218.10.
Pełny tekst źródłaKitagami, Y., N. Kanzaki i Y. Matsuda. "First report of segmented filamentous bacteria associated with Rhigonema sp. (Nematoda: Rhigonematidae) dwelling in hindgut of Riukiaria sp. (Diplopoda: Xystodesmidae)". Helminthologia 56, nr 3 (1.09.2019): 219–28. http://dx.doi.org/10.2478/helm-2019-0018.
Pełny tekst źródłaTalham, Gwen L., Han-Qing Jiang, Nicolaas A. Bos i John J. Cebra. "Segmented Filamentous Bacteria Are Potent Stimuli of a Physiologically Normal State of the Murine Gut Mucosal Immune System". Infection and Immunity 67, nr 4 (1.04.1999): 1992–2000. http://dx.doi.org/10.1128/iai.67.4.1992-2000.1999.
Pełny tekst źródłaGoto, Yoshiyuki, Yoshinori Umesaki, Yoshimi Benno i Hiroshi Kiyono. "Specific comensal bacteria modulate epithelial glycosylaion (59.5)". Journal of Immunology 186, nr 1_Supplement (1.04.2011): 59.5. http://dx.doi.org/10.4049/jimmunol.186.supp.59.5.
Pełny tekst źródłaYamauchi, Koh-En, i Johannes Snel. "Transmission Electron Microscopic Demonstration of Phagocytosis and Intracellular Processing of Segmented Filamentous Bacteria by Intestinal Epithelial Cells of the Chick Ileum". Infection and Immunity 68, nr 11 (1.11.2000): 6496–504. http://dx.doi.org/10.1128/iai.68.11.6496-6504.2000.
Pełny tekst źródłaMcCarthy, Ú., R. Pettinello, L. Feehan, YM Ho i P. White. "Experimental transmission of segmented filamentous bacteria (SFB) in rainbow trout Oncorhynchus mykiss". Diseases of Aquatic Organisms 119, nr 1 (12.04.2016): 45–57. http://dx.doi.org/10.3354/dao02977.
Pełny tekst źródłaGriffith, Thomas, Javier Cabrera, Jeffrey Babcock i Vladimir Badovinac. "Differential function of Ag-specific CD4 T cells from sepsis-induced lymphopenia is influenced by gut microbiota (MPF2P.744)". Journal of Immunology 194, nr 1_Supplement (1.05.2015): 63.3. http://dx.doi.org/10.4049/jimmunol.194.supp.63.3.
Pełny tekst źródłaGauguet, Stefanie, Samantha D'Ortona, Kathryn Ahnger-Pier, Biyan Duan, Neeraj K. Surana, Roger Lu, Colette Cywes-Bentley i in. "Intestinal Microbiota of Mice Influences Resistance to Staphylococcus aureus Pneumonia". Infection and Immunity 83, nr 10 (27.07.2015): 4003–14. http://dx.doi.org/10.1128/iai.00037-15.
Pełny tekst źródłaLadinsky, Mark S., Leandro P. Araujo, Xiao Zhang, John Veltri, Marta Galan-Diez, Salima Soualhi, Carolyn Lee i in. "Endocytosis of commensal antigens by intestinal epithelial cells regulates mucosal T cell homeostasis". Science 363, nr 6431 (7.03.2019): eaat4042. http://dx.doi.org/10.1126/science.aat4042.
Pełny tekst źródłaBurgess, Stacey L., Mahmoud Saleh, Carrie A. Cowardin, Erica Buonomo, Zannatun Noor, Koji Watanabe, Mayuresh Abhyankar, Stephane Lajoie, Marsha Wills-Karp i William A. Petri. "Role of Serum Amyloid A, Granulocyte-Macrophage Colony-Stimulating Factor, and Bone Marrow Granulocyte-Monocyte Precursor Expansion in Segmented Filamentous Bacterium-Mediated Protection from Entamoeba histolytica". Infection and Immunity 84, nr 10 (25.07.2016): 2824–32. http://dx.doi.org/10.1128/iai.00316-16.
Pełny tekst źródłaMarino, Naomi Claudette Rodriguez, Dormarie E. Rivera-Rodriguez, Charlotte J. Royer, Madelyn Yaceczko i Luisa Cervantes-Barragan. "Dietary fiber and Segmented Filamentous Bacteria interaction with intestinal epithelial cells supports the development of CD4 +CD8αα +intraepithelial T cells". Journal of Immunology 210, nr 1_Supplement (1.05.2023): 150.02. http://dx.doi.org/10.4049/jimmunol.210.supp.150.02.
Pełny tekst źródłaJiang, Han-Qing, Nicolaas A. Bos i John J. Cebra. "Timing, Localization, and Persistence of Colonization by Segmented Filamentous Bacteria in the Neonatal Mouse Gut Depend on Immune Status of Mothers and Pups". Infection and Immunity 69, nr 6 (1.06.2001): 3611–17. http://dx.doi.org/10.1128/iai.69.6.3611-3617.2001.
Pełny tekst źródłaPamp, Sünje J., Eoghan D. Harrington, Stephen R. Quake, David A. Relman i Paul C. Blainey. "Single-cell sequencing provides clues about the host interactions of segmented filamentous bacteria (SFB)". Genome Research 22, nr 6 (20.03.2012): 1107–19. http://dx.doi.org/10.1101/gr.131482.111.
Pełny tekst źródłaGhilardi, Nico, Jennifer Cox i Vincent Shih. "Homeostatic IL-23R signaling limits TH17 response through IL-22-mediated containment of commensal microbiota (MUC9P.818)". Journal of Immunology 192, nr 1_Supplement (1.05.2014): 199.5. http://dx.doi.org/10.4049/jimmunol.192.supp.199.5.
Pełny tekst źródłaMcAleer, Jeremy, Nikki Nguyen, Kong Chen, Rachel Armentrout, Derek Pociask, David Ricks, Matthew Binnie i in. "Pulmonary Th17 immunity is regulated by regenerating islet-derived III-gamma and the gut microbiome (MUC4P.826)". Journal of Immunology 192, nr 1_Supplement (1.05.2014): 133.2. http://dx.doi.org/10.4049/jimmunol.192.supp.133.2.
Pełny tekst źródłaMcKarns, Susan, i Patrick Miller. "TNFR2 regulates gut commensal microbiota tocontrol sex-biased spontaneous experimental autoimmune encephalomyelitis (BA6P.138)". Journal of Immunology 194, nr 1_Supplement (1.05.2015): 114.19. http://dx.doi.org/10.4049/jimmunol.194.supp.114.19.
Pełny tekst źródłaSeo, Goo-Young, Jr-Wen Shui, Zbigniew Mikulski, Qingyang Wang, Daisuke Takahashi, Daniel A. Giles, Hitoshi Iwaya i in. "CD160-HVEM signaling in intestinal epithelial cells modulates gut microbial homeostasis". Journal of Immunology 202, nr 1_Supplement (1.05.2019): 191.11. http://dx.doi.org/10.4049/jimmunol.202.supp.191.11.
Pełny tekst źródłaFelix, Krysta M., Ivan Jaimez, Thuy-Vi Nguyen, Heqing Ma, Walid Raslan, Christina Klinger, Kristian Doyle i Hsin-Jung Joyce Wu. "Gut microbiota enhances neutrophil resolution in immunocompromised hosts to improve response to pneumococcal pneumonia." Journal of Immunology 200, nr 1_Supplement (1.05.2018): 173.10. http://dx.doi.org/10.4049/jimmunol.200.supp.173.10.
Pełny tekst źródłaKumar, Pawan, Leticia Monin, Paticia Castillo, Waleed Abdel Wahab Elsegeiny, William Horne, Taylor John Eddens, Misty Good i in. "Intestinal IL-17R signaling modulates commensal microbiota by regulating expression of Nox1 and Pigr". Journal of Immunology 196, nr 1_Supplement (1.05.2016): 207.2. http://dx.doi.org/10.4049/jimmunol.196.supp.207.2.
Pełny tekst źródłaCebra, John J., Sangeeta Bhargava Periwal, Gwen Lee, Fan Lee i Khushroo E. Shroff. "Development and Maintenance of the Gut-Associated Lymphoid Tissue (Galt): the Roles of Enteric Bacteria and Viruses". Developmental Immunology 6, nr 1-2 (1998): 13–18. http://dx.doi.org/10.1155/1998/68382.
Pełny tekst źródłaAggor, Felix E. Y., Chunsheng Zhou, Darryl Abbott, Javonn Musgrove, Vincent Bruno, Timothy W. Hand i Sarah L. Gaffen. "Th17-driven immunity to oral candidiasis is dependent on the microbiome and can be triggered by mono-colonization with segmented filamentous bacteria." Journal of Immunology 208, nr 1_Supplement (1.05.2022): 115.18. http://dx.doi.org/10.4049/jimmunol.208.supp.115.18.
Pełny tekst źródłaSano, Teruyuki, Zachary White i Ivan Cabrera. "Commensal-specific CD4 T cells can promote inflammation in the central nervous system via molecular mimicry". Journal of Immunology 210, nr 1_Supplement (1.05.2023): 227.09. http://dx.doi.org/10.4049/jimmunol.210.supp.227.09.
Pełny tekst źródłaBukina, Yu V., L. Ya Fedoniuk, G. D. Koval, Yu O. Shekhovtsova, A. M. Kamyshnyi, A. O. Gubar i V. O. Gubka. "Salmonella-induced changes in the level of key immunoregulatory bacteria affect the transcriptional activity of the Foxp3 and RORgt genes in the gut-associated lymphoid tissue of rats". Russian Journal of Infection and Immunity 10, nr 4 (27.11.2020): 671–85. http://dx.doi.org/10.15789/2220-7619-sic-1151.
Pełny tekst źródłaBlock, Katharine, i Haochu Huang. "The gut microbiota regulates K/BxN autoimmune arthritis independent of Th17 and IL-17 (BA6P.121)". Journal of Immunology 194, nr 1_Supplement (1.05.2015): 114.2. http://dx.doi.org/10.4049/jimmunol.194.supp.114.2.
Pełny tekst źródłaLiao, Ningbo, Yeshi Yin, Guochang Sun, Charlie Xiang, Donghong Liu, Hongwei D. Yu i Xin Wang. "Colonization and distribution of segmented filamentous bacteria (SFB) in chicken gastrointestinal tract and their relationship with host immunity". FEMS Microbiology Ecology 81, nr 2 (18.04.2012): 395–406. http://dx.doi.org/10.1111/j.1574-6941.2012.01362.x.
Pełny tekst źródłaSeo, Goo-Young, Jr-Wen Shui, Zbigniew Mikulski, Hilde Cheroutre, Pyeung-Hyeun Kim i Mitchell Kronenberg. "HVEM expression by intestinal epithelial cells modulates the microbiome and epithelial immunity". Journal of Immunology 198, nr 1_Supplement (1.05.2017): 200.10. http://dx.doi.org/10.4049/jimmunol.198.supp.200.10.
Pełny tekst źródłaBarin, Jobert, Nicola Diny, Elizabeth Gebremariam, Monica Talor, Djahida Bedja, David Kass, Daniel Peterson, Noel Rose i Daniela Cihakova. "Commensal microbiota regulate inflammatory cardiac remodeling (BA6P.126)". Journal of Immunology 194, nr 1_Supplement (1.05.2015): 114.7. http://dx.doi.org/10.4049/jimmunol.194.supp.114.7.
Pełny tekst źródłaSofi, Mohammed, Radhika Gudi, Subha Karumuthil-Melethil, Nicolas Perez, Benjamin Johnson i Chenthamarakshan Vasu. "Influence of drinking water pH on gut microbiota and type 1 diabetes (P4069)". Journal of Immunology 190, nr 1_Supplement (1.05.2013): 127.6. http://dx.doi.org/10.4049/jimmunol.190.supp.127.6.
Pełny tekst źródłaFlannigan, K. L., M. Johnston, S. L. Erickson, K. Nieves, H. Jijon, M. Gallo, K. McCoy i S. A. Hirota. "A14 GUT-RESIDING BACTERIA CAN SHAPE HOST DRUG METABOLISM IN THE SMALL INTESTINE THROUGH AN INNATE LYMPHOID CELL-IL-22 DRIVEN AXIS". Journal of the Canadian Association of Gastroenterology 3, Supplement_1 (luty 2020): 16–17. http://dx.doi.org/10.1093/jcag/gwz047.013.
Pełny tekst źródłaXu, Mo, Yi Yang, Maria Pokrovskii, Carolina Galan i Dan R. Littman. "Balance of Commensal Bacteria-Specific Th17 and RORγt+ Treg Cells in Intestinal Homeostasis and Inflammation". Journal of Immunology 196, nr 1_Supplement (1.05.2016): 137.3. http://dx.doi.org/10.4049/jimmunol.196.supp.137.3.
Pełny tekst źródłaJellbauer, Stefan, Araceli Perez Lopez, Judith Behnsen, Nina Gao, Thao Nguyen, Clodagh Murphy, Robert A. Edwards i Manuela Raffatellu. "Beneficial Effects of Sodium Phenylbutyrate Administration during Infection with Salmonella enterica Serovar Typhimurium". Infection and Immunity 84, nr 9 (5.07.2016): 2639–52. http://dx.doi.org/10.1128/iai.00132-16.
Pełny tekst źródłaSalvador, Ryan S., Reiko Horai, Jihong Tang, Carlos Zárate-Bladés, Yingyos Jittayasothorn, Kikuji Itoh, Yoshinori Umesaki i Rachel R. Caspi. "Gut microbiota as a source of signals that trigger spontaneous ocular autoimmunity." Journal of Immunology 198, nr 1_Supplement (1.05.2017): 218.10. http://dx.doi.org/10.4049/jimmunol.198.supp.218.10.
Pełny tekst źródłaUpadhyay, Vaibhav, i Yang-Xin Fu. "Lymphotoxin reduces commensal diversity to enable diet induced obesity (120.2)". Journal of Immunology 188, nr 1_Supplement (1.05.2012): 120.2. http://dx.doi.org/10.4049/jimmunol.188.supp.120.2.
Pełny tekst źródłaCastillo, Patricia, Pawan Kumar i Jay K. Kolls. "Dysregulation of intestinal IL17 signaling & the microbiome exacerbate autoimmune neuroinflammation." Journal of Immunology 196, nr 1_Supplement (1.05.2016): 118.4. http://dx.doi.org/10.4049/jimmunol.196.supp.118.4.
Pełny tekst źródłaManfredo Vieira, SILVIO, William Ruff, Michael Hiltensperger, Andrew Yu, Andrew Goodman i Martin Kriegel. "Gut commensal dependence of autoreactivity and Th17 cells in systemic autoimmunity (MUC9P.740)". Journal of Immunology 194, nr 1_Supplement (1.05.2015): 205.4. http://dx.doi.org/10.4049/jimmunol.194.supp.205.4.
Pełny tekst źródłaSINGH, AMIR KUMAR, Ritesh Kumar, John F. Brooks, Kevin P. Conlon, Venkatesha Basrur, Zhe Chen, Xialin Han, Lora Hooper, Ezra Burstein i Venuprasad K. "RORγt-Raftlin1 complex regulates the pathogenicity of Th17 cells and intestinal inflammation." Journal of Immunology 210, nr 1_Supplement (1.05.2023): 154.03. http://dx.doi.org/10.4049/jimmunol.210.supp.154.03.
Pełny tekst źródłaKowalczyk, Paulina, Anna Strzępa i Marian Szczepanik. "Perinatal treatment of parents with the broad-spectrum antibiotic enrofloxacin aggravates contact sensitivity in adult offspring mice". Pharmacological Reports 73, nr 2 (22.01.2021): 664–71. http://dx.doi.org/10.1007/s43440-021-00217-3.
Pełny tekst źródłaDiehl, Gretchen, Andrea Hill-McAlester, Karina Ochoa i Carolina Galan. "CX3CR1 mononuclear phagocytes utilize the microbiota to promote balanced intestinal immune responses". Journal of Immunology 196, nr 1_Supplement (1.05.2016): 136.7. http://dx.doi.org/10.4049/jimmunol.196.supp.136.7.
Pełny tekst źródłaMao, Kairui, Antonio Baptista, Nicolas Bouladoux, Andrew J. Martins, Samira Tamoutounour, Jacquice Davis, Yuefeng Huang, Michael Y. Gerner, Yasmine Belkaid i Ronald N. Germain. "Sequential activity of innate and adaptive lymphocytes supports non-inflammatory gut microbial commensalism". Journal of Immunology 198, nr 1_Supplement (1.05.2017): 200.14. http://dx.doi.org/10.4049/jimmunol.198.supp.200.14.
Pełny tekst źródłaXu, Chunliang, Sungkyun Lee i Paul S. Frenette. "The Gut Microbiome Regulates Psychological Stress-Induced Inflammation in Sickle Cell Disease". Blood 134, Supplement_1 (13.11.2019): 205. http://dx.doi.org/10.1182/blood-2019-122331.
Pełny tekst źródła