Gotowa bibliografia na temat „Secretory compartments”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Secretory compartments”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Secretory compartments"
Schmidt, W. K., i H. P. Moore. "Ionic milieu controls the compartment-specific activation of pro-opiomelanocortin processing in AtT-20 cells." Molecular Biology of the Cell 6, nr 10 (październik 1995): 1271–85. http://dx.doi.org/10.1091/mbc.6.10.1271.
Pełny tekst źródłaDerré, Isabelle, i Ralph R. Isberg. "LidA, a Translocated Substrate of the Legionella pneumophila Type IV Secretion System, Interferes with the Early Secretory Pathway". Infection and Immunity 73, nr 7 (lipiec 2005): 4370–80. http://dx.doi.org/10.1128/iai.73.7.4370-4380.2005.
Pełny tekst źródłaTobin, V. A., i M. Ludwig. "The actin filament and dendritic peptide release". Biochemical Society Transactions 35, nr 5 (25.10.2007): 1243–46. http://dx.doi.org/10.1042/bst0351243.
Pełny tekst źródłaBianco, P., M. Riminucci, E. Bonucci, J. D. Termine i P. G. Robey. "Bone sialoprotein (BSP) secretion and osteoblast differentiation: relationship to bromodeoxyuridine incorporation, alkaline phosphatase, and matrix deposition." Journal of Histochemistry & Cytochemistry 41, nr 2 (luty 1993): 183–91. http://dx.doi.org/10.1177/41.2.8419458.
Pełny tekst źródłaNaik, Haley B., Melissa Beshire, Breda M. Walsh, Jingjing Liu i David I. Soybel. "Secretory state regulates Zn2+ transport in gastric parietal cell of the rabbit". American Journal of Physiology-Cell Physiology 297, nr 4 (październik 2009): C979—C989. http://dx.doi.org/10.1152/ajpcell.00577.2008.
Pełny tekst źródłaPlutner, H., A. D. Cox, S. Pind, R. Khosravi-Far, J. R. Bourne, R. Schwaninger, C. J. Der i W. E. Balch. "Rab1b regulates vesicular transport between the endoplasmic reticulum and successive Golgi compartments." Journal of Cell Biology 115, nr 1 (1.10.1991): 31–43. http://dx.doi.org/10.1083/jcb.115.1.31.
Pełny tekst źródłaRaote, Ishier, i Vivek Malhotra. "Protein transport by vesicles and tunnels". Journal of Cell Biology 218, nr 3 (4.02.2019): 737–39. http://dx.doi.org/10.1083/jcb.201811073.
Pełny tekst źródłaDiekwisch, Thomas G. H. "Subunit Compartments of Secretory Stage Enamel Matrix". Connective Tissue Research 38, nr 1-4 (styczeń 1998): 101–11. http://dx.doi.org/10.3109/03008209809017026.
Pełny tekst źródłaSaraste, Jaakko. "Introduction: Enigmatic compartments of the secretory pathway". Seminars in Cell Biology 3, nr 5 (październik 1992): 299. http://dx.doi.org/10.1016/1043-4682(92)90016-o.
Pełny tekst źródłaOyarce, A. M., i B. A. Eipper. "Identification of subcellular compartments containing peptidylglycine alpha-amidating monooxygenase in rat anterior pituitary". Journal of Cell Science 108, nr 1 (1.01.1995): 287–97. http://dx.doi.org/10.1242/jcs.108.1.287.
Pełny tekst źródłaRozprawy doktorskie na temat "Secretory compartments"
Chehayeb, James. "Proteomic analysis of «Ascaris suum» fluid compartments and secretory products". Thesis, McGill University, 2014. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=123155.
Pełny tekst źródłaAscaris lumbricoides infecte au moins 10% de la population mondiale et est une problématique de santé publique dans les pays en voie de développement. La survie de ce parasite dans son hôte est médiée d'une part par des substances exportées à son hôte par voies de secrétions. Bien que peu d'informations soient connues sur la composition de ces substances, définir leur contenu ainsi que leurs fonctions pourraient aider à clarifier la relation entre le parasite et son hôte. Ascaris suum est un parasite du porc utilisé comme organisme-modèle en raison de son génome séquencé et de sa similarité morphologique avec le parasite de l'homme, A. lumbricoides. Les produits de secrétions/excrétions (PSE), le fluide perientérique (FPE) et le fluide utérin (FU) ont été obtenus des femelles adultes d'A. suum. Les protéines contenues dans ces fluides ont été isolées et soumises à LC-MS/MS et ont ensuite été soumises à des analyses bioinformatiques. Une fraction de PSE inclut plusieurs protéines qui se trouvent aussi dans FU. Les protéines trouvées dans les PSE, mais absentes du FU, avaient une composition catégorique différente comparée aux FPE et au FU, lesquels montraient une composition similaire. Nous concluons par ces résultats que les protéines exportées par l'appareil de sécrétion ont des motifs distincts en termes de fonctions biologiques et que les protéines du FU sont dérivées du FPE. De plus, le PSE d' A. suum a été comparé au PSE de Brugia malayi et au PSE de Heligmosomoides polygyrus. Nous avons conclu que le secretome d' A. suum est conservé à la fois par phylogénie et l'emplacement de l'infection dans l'hôte.
Al-Qatabi, Noha. "Caractérisation de protéines atypiques à domaine BAR codées par Toxoplasma gondii". Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ6006.
Pełny tekst źródłaToxoplasma gondii, the causative agent of toxoplasmosis, infects and replicates within host cells through its ability to secrete factors stored in unique secretory organelles (rhoptries, micronemes, dense granules). These factors allow the parasite to modulate the host's immune system and capture certain elements. The formation of these unique organelles and the secretion and capture processes depend on trafficking events whose molecular bases remain poorly understood. Notably, there is virtually no characterization of BAR domain proteins, expressed in T. gondii and other apicomplexans, despite their known role in vesicular trafficking in other eukaryotes. Here, by combining structural analyses with in vitro tests and cellular observations, I characterized TgREMIND (REgulators of Membrane INter-acting Do-mains), a protein involved in the generation of rhoptries and dense granules, as well as TgBAR2, located at the periphery of the parasite. I established that TgREMIND has an F-BAR domain to preferentially target neutral membranes and potentially disrupt them. Additionally, I show that the protein has a new type of structural domain called REMIND, which appears capable of inhibiting TgREMIND activity. In parallel, I show that TgBAR2 contains a BAR domain with the most basic membrane-binding interface described for this type of domain, capable of powerfully deforming anionic membranes to form micellar tubules. This suggests that this domain represents a new type of BAR domain. My data indicate that T. gondii encodes two atypical BAR domain proteins with highly contrasting membrane binding properties to target distinct regions of its vesicular trafficking system
Jonikas, Martin Casimir. "The anatomy of a cellular folding compartment: Genetic dissection of protein folding in the secretory pathway". Diss., Search in ProQuest Dissertations & Theses. UC Only, 2009. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3390051.
Pełny tekst źródłaMoutaux, Eve. "Régulation du transport axonal par l'activité neuronale : Implication pour le développement des réseaux neuronaux Neuronal activity recruits an axon-resident pool of secretory vesicles to regulate axon branching Reconstituting Corticostriatal Network on-a-Chip Reveals the Contribution of the Presynaptic Compartment to Huntington’s Disease Neuronal network maturation differently affects secretory vesicles and mitochondria transport in axons ALG-2 interacting protein-X (Alix) is required for activity-dependent bulk endocytosis at brain synapses An integrated microfluidic/microelectrode array for the study of activity-dependent intracellular dynamics in neuronal networks". Thesis, Université Grenoble Alpes, 2020. https://thares.univ-grenoble-alpes.fr/2020GRALV024.pdf.
Pełny tekst źródłaDuring postnatal development, long-distance axonal projections form branches to connect with their targets. Establishment and remodeling of these projections are tightly regulated by neuronal activity and require a large amount of secretory material and trophic factors, such as brain derived neurotrophic factor (BDNF). Axonal transport is responsible for addressing trophic factors packed into vesicles to high demand sites where mechanisms of secretion are well-known. However, mechanisms controlling the preferential targeting of axonal vesicles to active sites in response to neuronal activity are unknown.In this work, we first developed tools to study intracellular dynamics in neuronal networks. We thus developed a microfluidic chamber to reconstruct physiologically-relevant networks in vitro which is compatible with high resolution videomicroscopy. We characterized the formation and maturation of reconstructed networks and we validated the relevance of the microfluidic platform in the context of Huntington’s disease. We then studied the evolution of intracellular dynamics with the maturation of reconstructed neuronal networks in microfluidic chambers. We observed an increase of anterograde axonal transport of secretory vesicles during maturation. These first results lead us to think that neuronal activity could regulate axonal transport of secretory vesicles over maturation of the network.Therefore, we improved the in vitro microfluidic system with a designed microelectrode array (MEA) substrate allowing us to record intracellular dynamics while controlling neuronal activity. Using this system, we identified an axon-resident reserve pool of secretory vesicles recruited upon neuronal activity to rapidly distribute secretory materials to presynaptic sites. We identified the activity-dependent mechanism of recruitment of this axonal pool of vesicles along the axon shaft. We showed that Myosin Va ensures the tethering of vesicles in the axon shaft in axonal actin structures. Specifically, neuronal activity induces a calcium increase after activation of Voltage Gated Calcium Channels along the axon, which regulates Myosin Va and triggers the recruitment of tethered vesicles on microtubules. We then showed the involvement of this activity-dependent pool for axon branches formation during axon development. By developing 2-photon live microscopy of axonal transport in acute slices, we finally confirmed that a pool of axon-resident static vesicles is recruited by neuronal activity in vivo with a similar kinetic.Altogether, this work provides new in vitro and in vivo tools to study intracellular dynamics in physiological networks. Using these tools, we identified the existence of a local mechanism of axonal transport regulation along the axon shaft, allowing rapid supply of trophic factors to developing branches
Titus, Brian John. "p22 associates with compartments of the early secretory pathway and with the microtubule cytoskeleton : evidence for a role in membrane trafficking /". 2003. http://wwwlib.umi.com/dissertations/fullcit/3073575.
Pełny tekst źródłaWaldron, Elaine [Verfasser]. "LRP1 modulates APP trafficking and APP metabolism within compartments of the secretory pathway : increased AICD generation is ineffective in nuclear translocation and transcriptional activation / Elaine Waldron". 2008. http://d-nb.info/987171437/34.
Pełny tekst źródłaCzęści książek na temat "Secretory compartments"
Hendriks, Rob J. M., i Stephen D. Fuller. "Compartments of the Early Secretory Pathway". W Subcellular Biochemistry, 101–49. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2401-4_4.
Pełny tekst źródłaGooris, Peter J. J., i Carl-Peter Cornelius. "Anatomy of the Orbit: Overall Aspects of the Peri- and Intra Orbital Soft Tissues". W Surgery in and around the Orbit, 59–119. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-40697-3_3.
Pełny tekst źródłaHamilton, R. L., R. J. Havel, C. A. Hornick, E. Jost-Vu, J. Belcher, E. Spaziani i G. H. Enders. "Subcellular Dissection and Characterization of Plasma Lipoprotein Secretory (Golgi) and Endocytic (Multivesicular Bodies) Compartments of Rat Hepatocytes". W Receptor-Mediated Uptake in the Liver, 125–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-70956-2_23.
Pełny tekst źródłaGhanem, Esther, i Sebastian Springer. "Determining the Activity of the Transporter Associated with Antigen Processing in the Compartments of the Secretory Pathway". W Antigen Processing, 137–44. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-62703-218-6_11.
Pełny tekst źródłaGraham, T., i S. Emr. "SEC18". W Secretory Pathway, 132. Oxford University PressOxford, 1994. http://dx.doi.org/10.1093/oso/9780198599425.003.0082.
Pełny tekst źródłaRothblatt, Jonathan, Peter Novick i Tom H. Stevens. "Entering the secretory pathway". W Secretory Pathway, 1–2. Oxford University PressOxford, 1994. http://dx.doi.org/10.1093/oso/9780198599425.003.0001.
Pełny tekst źródłaMellman, I. "Rab4". W Secretory Pathway, 295. Oxford University PressOxford, 1994. http://dx.doi.org/10.1093/oso/9780198599425.003.0183.
Pełny tekst źródłaSchwaninger, Ruth. "In vitro reconstitution of vesicular transport from the endoplasmic reticulum to the cis Golgi in semi-intact cells". W Protein Targeting, 217–31. Oxford University PressOxford, 1992. http://dx.doi.org/10.1093/oso/9780199632060.003.0009.
Pełny tekst źródłaCramer, Louise P., i Daniel F. Cutler. "Sorting between exocytic pathways in PC12 cells". W Protein Targeting, 59–85. Oxford University PressOxford, 1992. http://dx.doi.org/10.1093/oso/9780199632060.003.0003.
Pełny tekst źródłaBenarroch, Eduardo E. "Vesicular Trafficking". W Neuroscience for Clinicians, redaktor Eduardo E. Benarroch, 106–25. Oxford University Press, 2021. http://dx.doi.org/10.1093/med/9780190948894.003.0007.
Pełny tekst źródłaStreszczenia konferencji na temat "Secretory compartments"
Beznoussenko, Galina. "Re-examination of the secretory compartments in the study of transport organelles in mitotic cells with correlative light, immune and three-dimensional electron microscopy". W European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.960.
Pełny tekst źródłaLiu, Yen-Cheng, Saeid Ansaryan, Xiaokang Li, Eduardo R. Arvelo i Hatice Altug. "High-throughput optofluidic nanoplasmonic biosensor array for monitoring single-cell secretion in real-time". W CLEO: Applications and Technology. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_at.2022.am2i.6.
Pełny tekst źródłaPatscheke, H., i G. Mathieu. "MONITORING OF THE PLATELET ALPHA-GRANULE SECRETION IN THE AGGREGOMETER." W XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643492.
Pełny tekst źródła