Artykuły w czasopismach na temat „SDUMLA-HMT”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 29 najlepszych artykułów w czasopismach naukowych na temat „SDUMLA-HMT”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Noh, Kyoung Jun, Jiho Choi, Jin Seong Hong i Kang Ryoung Park. "Finger-Vein Recognition Using Heterogeneous Databases by Domain Adaption Based on a Cycle-Consistent Adversarial Network". Sensors 21, nr 2 (13.01.2021): 524. http://dx.doi.org/10.3390/s21020524.
Pełny tekst źródłaNoroz, Noroz Khan Baloch, Saleem Ahmed Ahmed, Ramesh Kumar Kumar, DM Saqib Bhatii Bhatti i Yawar Rehaman Rehman. "Finger-Vein Image Dual Contrast Adjustment and Recognition Using 2D-CNN". Sukkur IBA Journal of Computing and Mathematical Sciences 6, nr 1 (21.07.2022): 16–25. http://dx.doi.org/10.30537/sjcms.v6i1.1001.
Pełny tekst źródłaSharif, Hanan, Faisal Rehman, Naveed Riaz, Rana Mohtasham Aftab, Adnan Ashraf i Azher Mehmood. "Identification of Finger Vein Images with Deep Neural Networks". Lahore Garrison University Research Journal of Computer Science and Information Technology 7, nr 02 (21.08.2023): 29–36. http://dx.doi.org/10.54692/lgurjcsit.2023.0702425.
Pełny tekst źródłaLi, Jun, Luokun Yang, Mingquan Ye, Yang Su i Juntong Liu. "Finger Vein Verification on Different Datasets Based on Deep Learning with Triplet Loss". Computational and Mathematical Methods in Medicine 2022 (20.10.2022): 1–10. http://dx.doi.org/10.1155/2022/4868435.
Pełny tekst źródłaHsia, Chih-Hsien, Zi-Han Yang, Hong-Jyun Wang i Kuei-Kuei Lai. "A New Enhancement Edge Detection of Finger-Vein Identification for Carputer System". Applied Sciences 12, nr 19 (9.10.2022): 10127. http://dx.doi.org/10.3390/app121910127.
Pełny tekst źródłaAhmed, Mona A., i Abdel-Badeeh M. Salem. "Intelligent Technique for Human Authentication using Fusion of Finger and Dorsal Hand Veins". WSEAS TRANSACTIONS ON INFORMATION SCIENCE AND APPLICATIONS 18 (9.07.2021): 91–101. http://dx.doi.org/10.37394/23209.2021.18.12.
Pełny tekst źródłaMahmoud, Rasha O., Mazen M. Selim i Omar A. Muhi. "Fusion Time Reduction of a Feature Level Based Multimodal Biometric Authentication System". International Journal of Sociotechnology and Knowledge Development 12, nr 1 (styczeń 2020): 67–83. http://dx.doi.org/10.4018/ijskd.2020010104.
Pełny tekst źródłaYulianto, Vandy Achmad, Nazrul Effendy i Agus Arif. "Finger vein identification system using capsule networks with hyperparameter tuning". IAES International Journal of Artificial Intelligence (IJ-AI) 12, nr 4 (1.12.2023): 1636. http://dx.doi.org/10.11591/ijai.v12.i4.pp1636-1643.
Pełny tekst źródłaSari, Jayanti Yusmah, i Rizal Adi Saputra. "Pengenalan Finger Vein Menggunakan Local Line Binary Pattern dan Learning Vector Quantization". Jurnal ULTIMA Computing 9, nr 2 (2.04.2018): 52–57. http://dx.doi.org/10.31937/sk.v9i2.790.
Pełny tekst źródłaChannegowda, Arjun Benagatte, i H. N. Prakash. "Multimodal biometrics of fingerprint and signature recognition using multi-level feature fusion and deep learning techniques". Indonesian Journal of Electrical Engineering and Computer Science 22, nr 1 (1.04.2021): 187. http://dx.doi.org/10.11591/ijeecs.v22.i1.pp187-195.
Pełny tekst źródłaK M, Prof Ramya, Pavan H, Darshan Gowda, Bhagavantray Hosamani i Jagadeva A S. "MULTIMODAL BIOMETRIC IDENTIFICATION SYSTEM USING THE FUSION OF FINGERPRINT AND IRIS RECOGNITION WITH CNN APPROACH". International Journal of Engineering Applied Sciences and Technology 6, nr 8 (1.12.2021): 213–20. http://dx.doi.org/10.33564/ijeast.2021.v06i08.036.
Pełny tekst źródłaFeng, Dingzhong, Shanyu He, Zihao Zhou i Ye Zhang. "A Finger Vein Feature Extraction Method Incorporating Principal Component Analysis and Locality Preserving Projections". Sensors 22, nr 10 (12.05.2022): 3691. http://dx.doi.org/10.3390/s22103691.
Pełny tekst źródłaJumaa, Shereen S., i Khamis A. Zidan. "HIGH ACCURACY RECOGNITION BIO METRICS BASED ON FINGER VEIN SCREENING SENSOR". Iraqi Journal of Information & Communications Technology 3, nr 2 (7.07.2020): 35–46. http://dx.doi.org/10.31987/ijict.3.2.101.
Pełny tekst źródłaZhi-Yong Tao, Zhi-Yong Tao, Meng Wang Zhi-Yong Tao, Xin-Ru Zhou Meng Wang, Jie Li Xin-Ru Zhou i Sen Lin Jie Li. "FFV-MBC: A Novel Fused Finger-Vein Recognition Method Based on Monogenic Binary Coding". 電腦學刊 34, nr 1 (luty 2023): 013–27. http://dx.doi.org/10.53106/199115992023023401002.
Pełny tekst źródłaKamlaskar, Chetana, i Aditya Abhyankar. "Multilinear principal component analysis for iris biometric system". Indonesian Journal of Electrical Engineering and Computer Science 23, nr 3 (1.09.2021): 1458. http://dx.doi.org/10.11591/ijeecs.v23.i3.pp1458-1469.
Pełny tekst źródłaChoi, Jiho, Jin Seong Hong, Muhammad Owais, Seung Gu Kim i Kang Ryoung Park. "Restoration of Motion Blurred Image by Modified DeblurGAN for Enhancing the Accuracies of Finger-Vein Recognition". Sensors 21, nr 14 (6.07.2021): 4635. http://dx.doi.org/10.3390/s21144635.
Pełny tekst źródłaCherrat, El mehdi, Rachid Alaoui i Hassane Bouzahir. "Convolutional neural networks approach for multimodal biometric identification system using the fusion of fingerprint, finger-vein and face images". PeerJ Computer Science 6 (6.01.2020): e248. http://dx.doi.org/10.7717/peerj-cs.248.
Pełny tekst źródłaKim, Wan, Jong Min Song i Kang Ryoung Park. "Multimodal Biometric Recognition Based on Convolutional Neural Network by the Fusion of Finger-Vein and Finger Shape Using Near-Infrared (NIR) Camera Sensor". Sensors 18, nr 7 (15.07.2018): 2296. http://dx.doi.org/10.3390/s18072296.
Pełny tekst źródłaSalama AbdELminaam, Diaa, Abdulrhman M. Almansori, Mohamed Taha i Elsayed Badr. "A deep facial recognition system using computational intelligent algorithms". PLOS ONE 15, nr 12 (3.12.2020): e0242269. http://dx.doi.org/10.1371/journal.pone.0242269.
Pełny tekst źródłaKamlaskar, Chetana, i Aditya Abhyankar. "Iris-Fingerprint multimodal biometric system based on optimal feature level fusion model". AIMS Electronics and Electrical Engineering 5, nr 4 (2021): 229–50. http://dx.doi.org/10.3934/electreng.2021013.
Pełny tekst źródłaTeng, Jackson Horlick, Thian Song Ong, Tee Connie, Kalaiarasi Sonai Muthu Anbananthen i Pa Pa Min. "Optimized Score Level Fusion for Multi-Instance Finger Vein Recognition". Algorithms 15, nr 5 (11.05.2022): 161. http://dx.doi.org/10.3390/a15050161.
Pełny tekst źródłaAlay, Nada, i Heyam H. Al-Baity. "Deep Learning Approach for Multimodal Biometric Recognition System Based on Fusion of Iris, Face, and Finger Vein Traits". Sensors 20, nr 19 (27.09.2020): 5523. http://dx.doi.org/10.3390/s20195523.
Pełny tekst źródłaMustafa, Ahmed A., i Ahmed AK Tahir. "Improving the Performance of Finger-Vein Recognition System Using A New Scheme of Modified Preprocessing Methods". Academic Journal of Nawroz University 9, nr 3 (30.08.2020): 397. http://dx.doi.org/10.25007/ajnu.v9n3a855.
Pełny tekst źródłaKovač, Ivan, i Pavol Marák. "Openfinger: Towards a Combination of Discriminative Power of Fingerprints and Finger Vein Patterns in Multimodal Biometric System". Tatra Mountains Mathematical Publications 77, nr 1 (1.12.2020): 109–38. http://dx.doi.org/10.2478/tmmp-2020-0012.
Pełny tekst źródłaShrey Kekade, Piyush Morey, Mayur Rajput, Sahil Karli i Priyanka Bendale. "Review Paper on an Authentication System using Siamese Convolutional Neural Networks". International Journal of Advanced Research in Science, Communication and Technology, 26.03.2023, 501–4. http://dx.doi.org/10.48175/ijarsct-8874.
Pełny tekst źródła"Impostor Detection Based Finger Veins Applying Machine Learning Methods". Iraqi Journal of Computer, Communication, Control and System Engineering, 30.09.2021, 98–111. http://dx.doi.org/10.33103/uot.ijccce.21.3.9.
Pełny tekst źródła"Impostor Detection Based Finger Veins Applying Machine Learning Methods". Iraqi Journal of Computer, Communication, Control and System Engineering, 30.09.2021, 98–111. http://dx.doi.org/10.33103/uot.ijccce.21.3.9.
Pełny tekst źródłaBoucetta, Aldjia, i Leila Boussaad. "Biometric Authentication Using Finger-Vein Patterns with Deep-Learning and Discriminant Correlation Analysis". International Journal of Image and Graphics, 22.04.2021, 2250013. http://dx.doi.org/10.1142/s0219467822500139.
Pełny tekst źródłaKolivand, Hoshang, Kayode Akinlekan Akintoye, Shiva Asadianfam i Mohd Shafry Rahim. "Improved methods for finger vein identification using composite Median-Wiener filter and hierarchical centroid features extraction". Multimedia Tools and Applications, 1.03.2023. http://dx.doi.org/10.1007/s11042-023-14469-z.
Pełny tekst źródła