Gotowa bibliografia na temat „Scramjet engine”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Scramjet engine”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Scramjet engine"
Jiang, Baohong. "Comprehensive Analysis of the Advanced Technologies for Scramjet". Highlights in Science, Engineering and Technology 43 (14.04.2023): 137–49. http://dx.doi.org/10.54097/hset.v43i.7413.
Pełny tekst źródłaSmart, M. "Scramjets". Aeronautical Journal 111, nr 1124 (październik 2007): 605–19. http://dx.doi.org/10.1017/s0001924000004796.
Pełny tekst źródłaJin, Liang, Xian Yu Wu, Jing Lei, Li Yan, Wei Huang i Jun Liu. "CFD Analysis of a Hypersonic Vehicle Powered by Triple-Module Scramjets". Applied Mechanics and Materials 390 (sierpień 2013): 71–75. http://dx.doi.org/10.4028/www.scientific.net/amm.390.71.
Pełny tekst źródłaDaren, Y., C. Tao i B. Wen. "An idea of distributed parameter control for scramjet engines". Aeronautical Journal 111, nr 1126 (grudzień 2007): 787–96. http://dx.doi.org/10.1017/s0001924000001901.
Pełny tekst źródłaCheng, Feng, Shuo Tang, Dong Zhang i Yi Li. "Quasi-One-Dimensional Modeling and Analysis of RBCC Dual-Mode Scramjet Engine". International Journal of Turbo & Jet-Engines 36, nr 2 (27.05.2019): 195–206. http://dx.doi.org/10.1515/tjj-2017-0055.
Pełny tekst źródłaJi, Zifei, Huiqiang Zhang i Bing Wang. "Thrust control strategy based on the minimum combustor inlet Mach number to enhance the overall performance of a scramjet engine". Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 233, nr 13 (20.02.2019): 4810–24. http://dx.doi.org/10.1177/0954410019830816.
Pełny tekst źródłaRelangi, Naresh, Lakshmi Narayana Phaneendra Peri, Caio Henrique Franco Levi Domingos, Amalia Fossella, Julia Meria Leite Henriques i Antonella Ingenito. "Design of Supersonic and Hybrid engine based Advanced Rocket (SHAR)". IOP Conference Series: Materials Science and Engineering 1226, nr 1 (1.02.2022): 012031. http://dx.doi.org/10.1088/1757-899x/1226/1/012031.
Pełny tekst źródłaVeeran, Sasha, Apostolos Pesyridis i Lionel Ganippa. "Ramjet Compression System for a Hypersonic Air Transportation Vehicle Combined Cycle Engine". Energies 11, nr 10 (25.09.2018): 2558. http://dx.doi.org/10.3390/en11102558.
Pełny tekst źródłaFan, Fa Qing, i Pei Yong Wang. "Investigation of the Non-Equilibrium Flow Phenomena in the Boundary Layer of the Scramjet Engine". Applied Mechanics and Materials 284-287 (styczeń 2013): 795–99. http://dx.doi.org/10.4028/www.scientific.net/amm.284-287.795.
Pełny tekst źródłaZhang, Fan, Huiqiang Zhang i Bing Wang. "Conceptual study of a dual-rocket-based-combined-cycle powered two-stage-to-orbit launch vehicle". Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 232, nr 5 (1.05.2017): 944–57. http://dx.doi.org/10.1177/0954410017703148.
Pełny tekst źródłaRozprawy doktorskie na temat "Scramjet engine"
Barone, Dominic L. "Investigation of TDLAS Measurements in a Scramjet Engine". University of Cincinnati / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1277130335.
Pełny tekst źródłaZinnecker, Alicia M. "Modeling for Control Design of an Axisymmetric Scramjet Engine Isolator". The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1354215841.
Pełny tekst źródłaMcGillivray, Nathan T. "Coupling Computational Fluid Dynamics Analysis and Optimization Techniques for Scramjet Engine Design". Wright State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=wright1536311445147862.
Pełny tekst źródłaEugênio, Ribeiro Fábio Henrique. "Numerical Simulation of Turbulent Combustion in Situations Relevant to Scramjet Engine Propulsion". Thesis, Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2019. http://www.theses.fr/2019ESMA0001/document.
Pełny tekst źródłaScramjet engines are high-speed air breathing propulsion systems that do not require rotating elements to compress the air inlet stream. The flow is compressed dynamically through a supersonic intake system integrated in the aircraft’s forebody, reaching the required pressure and temperature for combustion to proceed within the combustor in this kind of engine. The combustion chamber is crossed by a supersonic flow, which limits severely the time available to inject fuel, mix it with oxidizer, ignite the resulting mixture and reach complete combustion. Cavities can be used to increase the residence time without excessive total pressure loss and are therefore used as flame holders in supersonic combustors.This thesis focuses in studying the flame stabilization mechanism and turbulence-chemistry interactions for a jet in a supersonic crossflow (JISCF) of vitiated air with hydrogen injection upstream of a wall-mounted squared cavity. The corresponding reactive high-speed flow conditions are scrutinized on the basis of numerical simulations of a scramjet model representative of experiments previously conducted at the University of Michigan. The computations are performed with the high-performance computational solver CREAMS, developed to perform the numerical simulation of compressible reactive multi-component flows on massively-parallel architectures. The solver makes use of high-order precision numerical schemes applied on structured meshes and the combustion chamber geometry is modeled by using the Immersed Boundary Method (IBM) algorithm. The present set of computations is conducted within the LES framework and the subgrid viscosity is treated with the wall-adapting local eddy (WALE)model. Two distinct temperatures are considered in the inlet vitiated airstream to study combustion stabilization. Special emphasis is placed on the analysis of the reactive flow topology and structure,and the combustion regimes are analyzed on the basis of standard turbulent combustion diagrams
Maddalena, Luca. "Investigations of Injectors for Scramjet Engines". Diss., Virginia Tech, 2007. http://hdl.handle.net/10919/28683.
Pełny tekst źródłaPh. D.
Miki, Kenji. "Simulation of magnetohydrodynamics turbulence with application to plasma-assisted supersonic combustion". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/26605.
Pełny tekst źródłaCommittee Chair: Menon Suresh; Committee Co-Chair: Jagoda Jeff; Committee Member: Ruffin Stephen; Committee Member: Thorsten Stoesser; Committee Member: Walker Mitchell. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Fischer, Christian Max [Verfasser]. "Investigation of the isolator flow of scramjet engines / Christian Max Fischer". Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2014. http://d-nb.info/1059796627/34.
Pełny tekst źródłaCocks, Peter. "Large eddy simulation of supersonic combustion with application to scramjet engines". Thesis, University of Cambridge, 2011. https://www.repository.cam.ac.uk/handle/1810/239344.
Pełny tekst źródłaMoura, Augusto Fontan. "A computational study of the airflow at the intake region of scramjet engines". Instituto Tecnológico de Aeronáutica, 2014. http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2973.
Pełny tekst źródłaNajafiyazdi, Alireza. "Theoretical and numerical analysis of supersonic inlet starting by mass spillage". Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=111524.
Pełny tekst źródłaThe theory involves three parameters to incorporate the multi-dimensional nature of mass spillage through a wall perforation. Mass spillage through an individual slot is studied to determine these parameters; analytical expressions for these parameters are derived for both subsonic and supersonic flow conditions. In the case of mass spillage from supersonic flows, the relations are exact. However, due to the complexity of flow field, the theory is an approximation for subsonic flows. Therefore, a correction factor is introduced which is determined from an empirical relation obtained from numerical simulations.
A methodology is also proposed to determine perforation size and distribution to achieve flow starting for a given inlet at a desired free-stream Mach number. The problem of shock stability inside a perforated inlet designed with the proposed method is also discussed.
The method is demonstrated for some test cases. Time-realistic CFD simulations and experimental results in the literature confirm the accuracy of the theory and the reliability of the proposed design methodology.
Książki na temat "Scramjet engine"
The scramjet engine: Processes and characteristics. Cambridge: Cambridge University Press, 2009.
Znajdź pełny tekst źródłaBurkardt, Leo A. RAMSCRAM: A flexible ramjet/scramjet engine simulation program. [Washington, DC]: National Aeronautics and Space Administration, 1990.
Znajdź pełny tekst źródłaCenter, Langley Research, red. Internal aerodynamics of a generic three-dimensional scramjet inlet at Mach 10. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1995.
Znajdź pełny tekst źródłaCenter, Langley Research, red. Mach 10 experimental database of a three-dimensional scramjet inlet flow field. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1995.
Znajdź pełny tekst źródłaHolland, Scott D. Mach 10 experimental database of a three-dimensional scramjet inlet flow field. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1995.
Znajdź pełny tekst źródłaCenter, Langley Research, red. Wind-tunnel blockage and actuation systems test of a two-dimensional scramjet inlet unstart model at Mach 6. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1994.
Znajdź pełny tekst źródłaCenter, Langley Research, red. Wind-tunnel blockage and actuation systems test of a two-dimensional scramjet inlet unstart model at Mach 6. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1994.
Znajdź pełny tekst źródłaCenter, Langley Research, red. Wind-tunnel blockage and actuation systems test of a two-dimensional scramjet inlet unstart model at Mach 6. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1994.
Znajdź pełny tekst źródłaT, Curran E., i Murthy S. N. B, red. Scramjet propulsion. Reston, Va: American Institute of Aeronautics and Astronautics, 2000.
Znajdź pełny tekst źródłaSchetz, Joseph A. Studies in scramjet flowfields. [S.l.]: American Institute of Aeronautics and Astronautics, 1987.
Znajdź pełny tekst źródłaCzęści książek na temat "Scramjet engine"
Babu, V. "Ramjet and Scramjet Engine". W Fundamentals of Propulsion, 135–53. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79945-8_8.
Pełny tekst źródłaJose, Riyan Cyriac, Rhitik Raj, Yogesh Dewang i Vipin Sharma. "A Review on Scramjet Engine". W Lecture Notes in Mechanical Engineering, 539–48. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0159-0_48.
Pełny tekst źródłaKumar, Ajay. "Numerical Simulation of Scramjet Engine Flowfield". W Hypersonic Flows for Reentry Problems, 89–110. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77922-0_15.
Pełny tekst źródłaArjun, P., i S. R. Nagaraja. "Unstart Phenomenon in a Scramjet Engine Isolator". W Recent Advances in Thermofluids and Manufacturing Engineering, 195–204. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-4388-1_18.
Pełny tekst źródłaMasuya, Goro, Nobuo Chinzei i Yoichiro Miki. "Scramjet Engine Tests at Mach 4 and 6". W Fluid Mechanics and Its Applications, 147–62. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5432-1_12.
Pełny tekst źródłaRowan, S., T. Komuro, K. Sato i K. Itoh. "Combustion performance of a scramjet engine with inlet injection". W Shock Waves, 553–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85168-4_88.
Pełny tekst źródłaDu, Jinfeng, Chun Guan, Yuchun Chen, Haomin Li i Zhihua Wang. "Analysis of Overall Performance of Multi-stage Combustor Scramjet Engine". W Lecture Notes in Electrical Engineering, 1835–46. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3305-7_147.
Pełny tekst źródłaVijayakumar, G. "Thermal Design Methodology for Regenerative Fuel-Cooled Scramjet Engine Walls". W Advances in Applied Mechanical Engineering, 269–77. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1201-8_31.
Pełny tekst źródłaVerma, Kumari Ambe, K. M. Pandey i K. K. Sharma. "Study of Fuel Injection Systems in Scramjet Engine—A Review". W Lecture Notes in Mechanical Engineering, 931–40. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-7711-6_92.
Pełny tekst źródłaNaveen, K., Mukesh Kapoor, M. S. Prasad i S. Arunvinthan. "Design and Analysis of a Novel Cloverleaf Combustor for Scramjet Engine". W Lecture Notes in Mechanical Engineering, 51–63. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6469-3_5.
Pełny tekst źródłaStreszczenia konferencji na temat "Scramjet engine"
Burkardt, Leo A., i Leo C. Franciscus. "RAMSCRAM: A Flexible RAMJET/SCRAMJET Engine Simulation Program". W ASME 1990 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1990. http://dx.doi.org/10.1115/90-gt-323.
Pełny tekst źródłaHuang, Wei, Zhen-guo Wang, Shi-bin Luo, Jun Liu, Zhi-xun Xia, Jing Lei, Liang Jin i in. "Overview of Fuel Injection Techniques for Scramjet Engines". W ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/gt2011-45064.
Pełny tekst źródłaHe, Yongpan, Yuchun Chen, Dingxin Liu, Jie Liu, Mourong Lai i Xiao Liang. "Research on Solid Rocket/Scramjet Combined Engine". W 21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2017. http://dx.doi.org/10.2514/6.2017-2390.
Pełny tekst źródłaKanda, Takeshi. "Simulation of an airframe-integrated scramjet engine". W 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1998. http://dx.doi.org/10.2514/6.1998-3427.
Pełny tekst źródłaFlock, Andreas K., Johannes C. Riehmer i Ali Guelhan. "Axisymmetric SCRamjet Engine Design and Performance Analysis". W 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2015. http://dx.doi.org/10.2514/6.2015-3628.
Pełny tekst źródłaKanda, Takeshi, Yoshio Wakamatsu, Fumiei Ono, Kenji Kudo, Atsuo Murakami i Muneo Izumikawa. "Mach 8 testing of scramjet engine models". W 37th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-617.
Pełny tekst źródłaSato, Shigeru, Masaaki Fukui, Takahiro Watanabe, Masaharu Takahashi i Toshihiko Munakata. "Trial for Improvement in Scramjet Engine Performance". W 2018 AIAA Aerospace Sciences Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-0889.
Pełny tekst źródłaRisha, D. "Simulated engine and component performance of a pylon fueled scramjet engine". W 38th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2000. http://dx.doi.org/10.2514/6.2000-618.
Pełny tekst źródłaTomioka, Sadatake, Shuuichi Ueda, Kohichiro Tani i Takeshi Kanda. "Scramjet Engine Tests at Ramjet Engine Test Facility in JAXA-KSPC". W 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-1040.
Pełny tekst źródłaChinzei, Nobuo. "Progress in scramjet engine tests at NAL-KRC". W 10th AIAA/NAL-NASDA-ISAS International Space Planes and Hypersonic Systems and Technologies Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-1883.
Pełny tekst źródłaRaporty organizacyjne na temat "Scramjet engine"
McRae, D. S., i Jack R. Edwards. Dynamic Computational Analyses of Complete Scramjet Engine Modules. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2001. http://dx.doi.org/10.21236/ada399718.
Pełny tekst źródłaYu, Shaeng-Tao J., Chang-Kee Kim i Zeng-Chan Zhang. Simulation of High-Speed Cavity Flows in a Scramjet Engine by the Space-Time CESE Method. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2005. http://dx.doi.org/10.21236/ada439707.
Pełny tekst źródłaNoone, Emily, i Lydia Harriss. Hypersonic missiles. Parliamentary Office of Science and Technology, czerwiec 2023. http://dx.doi.org/10.58248/pn696.
Pełny tekst źródła