Artykuły w czasopismach na temat „Scramjet combustor”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Scramjet combustor”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Xiong, Yuefei, Jiang Qin, Kunlin Cheng, Silong Zhang i Yu Feng. "Quasi-One-Dimensional Model of Hydrocarbon-Fueled Scramjet Combustor Coupled with Regenerative Cooling". International Journal of Aerospace Engineering 2022 (8.08.2022): 1–14. http://dx.doi.org/10.1155/2022/9931498.
Pełny tekst źródłaLi, Chaolong, Zhixun Xia, Likun Ma, Xiang Zhao i Binbin Chen. "Numerical Study on the Solid Fuel Rocket Scramjet Combustor with Cavity". Energies 12, nr 7 (31.03.2019): 1235. http://dx.doi.org/10.3390/en12071235.
Pełny tekst źródłaAthithan, A. Antony, S. Jeyakumar, Norbert Sczygiol, Mariusz Urbanski i A. Hariharasudan. "The Combustion Characteristics of Double Ramps in a Strut-Based Scramjet Combustor". Energies 14, nr 4 (5.02.2021): 831. http://dx.doi.org/10.3390/en14040831.
Pełny tekst źródłaOuyang, Hao, Weidong Liu i Mingbo Sun. "Investigations on the Influence of the In-Stream Pylon and Strut on the Performance of a Scramjet Combustor". Scientific World Journal 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/309387.
Pełny tekst źródłaYang, Pengnian, Zhixun Xia, Likun Ma, BinBin Chen, Yunchao Feng, Chaolong Li i Libei Zhao. "Influence of the Multicavity Shape on the Solid Scramjet". International Journal of Aerospace Engineering 2021 (26.10.2021): 1–14. http://dx.doi.org/10.1155/2021/9718537.
Pełny tekst źródłaTahsini, AM. "Combustion efficiency and pressure loss balance for the supersonic combustor". Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 234, nr 6 (18.12.2019): 1149–56. http://dx.doi.org/10.1177/0954410019895885.
Pełny tekst źródłaLee, Jae-Hyuk, Eun-Sung Lee, Hyung-Seok Han, Min-Su Kim i Jeong-Yeol Choi. "A Study on a Vitiated Air Heater for a Direct-Connect Scramjet Combustor and Preliminary Test on the Scramjet Combustor Ignition". Aerospace 10, nr 5 (28.04.2023): 415. http://dx.doi.org/10.3390/aerospace10050415.
Pełny tekst źródłaChen, Hao, Mingming Guo, Ye Tian, Jialing Le, Hua Zhang i Fuyu Zhong. "Intelligent reconstruction of the flow field in a supersonic combustor based on deep learning". Physics of Fluids 34, nr 3 (marzec 2022): 035128. http://dx.doi.org/10.1063/5.0087247.
Pełny tekst źródłaYang, Pengnian, Zhixun Xia, Likun Ma, Binbin Chen, Yunchao Feng, Chaolong Li i Libei Zhao. "Direct-Connect Test of Solid Scramjet with Symmetrical Structure". Energies 14, nr 17 (6.09.2021): 5589. http://dx.doi.org/10.3390/en14175589.
Pełny tekst źródłaZhao, Zhelong, i Xianyu Wu. "Control Oriented Model for Expander Cycle Scramjet". MATEC Web of Conferences 257 (2019): 01004. http://dx.doi.org/10.1051/matecconf/201925701004.
Pełny tekst źródłaJi, Zifei, Huiqiang Zhang i Bing Wang. "Thrust control strategy based on the minimum combustor inlet Mach number to enhance the overall performance of a scramjet engine". Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 233, nr 13 (20.02.2019): 4810–24. http://dx.doi.org/10.1177/0954410019830816.
Pełny tekst źródłaGuimarães, Jefte Da Silva, Marco Antonio Sala Minucci i Dermeval Carinhana Júnior. "ESTUDO DE UMA CÂMARA DE COMBUSTÃO SUPERSÔNICA USANDO UM TÚNEL DE CHOQUE". CIMATech 1, nr 7 (23.12.2020): 126–36. http://dx.doi.org/10.37619/issn2447-5378.v7i1.297.126-136.
Pełny tekst źródłaCui, Tao, i Yang Ou. "Modeling of Scramjet Combustors Based on Model Migration and Process Similarity". Energies 12, nr 13 (30.06.2019): 2516. http://dx.doi.org/10.3390/en12132516.
Pełny tekst źródłaHuang, Juan-Chen, Yu-Hsuan Lai, Jeng-Shan Guo i Jaw-Yen Yang. "Simulation of Two-Dimensional Scramjet Combustor Reacting Flow Field Using Reynolds Averaged Navier-Stokes WENO Solver". Communications in Computational Physics 18, nr 4 (październik 2015): 1181–210. http://dx.doi.org/10.4208/cicp.190115.210715s.
Pełny tekst źródłaLi, Wei Qiang, i Fei Teng Luo. "Investigation of Performance of Scramjet Combustion Used Kerosene with Clean Air". Advanced Materials Research 601 (grudzień 2012): 294–98. http://dx.doi.org/10.4028/www.scientific.net/amr.601.294.
Pełny tekst źródłaYang, Jun, Xian-yu Wu i Zhen-guo Wang. "Parametric Study of Fuel Distribution Effects on a Kerosene-Based Scramjet Combustor". International Journal of Aerospace Engineering 2016 (2016): 1–14. http://dx.doi.org/10.1155/2016/7604279.
Pełny tekst źródłaTian, Ye, Shunhua Yang i Jialing Le. "Study on the Effect of Air Throttling on Flame Stabilization of an Ethylene Fueled Scramjet Combustor". International Journal of Aerospace Engineering 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/504684.
Pełny tekst źródłaKim, Min-Su, In-Hoi Koo, Keon-Hyeong Lee, Eun-Sung Lee, Hyung-Seok Han, Seung-Min Jeong, Holak Kim i Jeong-Yeol Choi. "Experimental Study on the Ignition Characteristics of Scramjet Combustor with Tandem Cavities Using Micro-Pulse Detonation Engine". Aerospace 10, nr 8 (11.08.2023): 706. http://dx.doi.org/10.3390/aerospace10080706.
Pełny tekst źródłaZhang, Linqing, Juntao Chang, Wenxiang Cai, Hui Sun i Yingkun Li. "A Preliminary Research on Combustion Characteristics of a Novel-Type Scramjet Combustor". International Journal of Aerospace Engineering 2022 (30.12.2022): 1–18. http://dx.doi.org/10.1155/2022/3930440.
Pełny tekst źródłaRouzbar, R., i S. Eyi. "Reacting flow analysis of a cavity-based scramjet combustor using a Jacobian-free Newton–Krylov method". Aeronautical Journal 122, nr 1258 (grudzień 2018): 1884–915. http://dx.doi.org/10.1017/aer.2018.110.
Pełny tekst źródłaIngle, Rahul, i Debasis Chakraborty. "Numerical Simulation of Dual-Mode Scramjet Combustor with Significant Upstream Interaction". International Journal of Manufacturing, Materials, and Mechanical Engineering 2, nr 3 (lipiec 2012): 60–74. http://dx.doi.org/10.4018/ijmmme.2012070105.
Pełny tekst źródłaRoga, Sukanta, i Krishna Murari Pandey. "Computational Analysis of Hydrogen-Fueled Scramjet Combustor Using Cavities in Tandem Flame Holder". Applied Mechanics and Materials 772 (lipiec 2015): 130–35. http://dx.doi.org/10.4028/www.scientific.net/amm.772.130.
Pełny tekst źródłaJeong, Seung-Min, i Jeong-Yeol Choi. "Combined Diagnostic Analysis of Dynamic Combustion Characteristics in a Scramjet Engine". Energies 13, nr 15 (4.08.2020): 4029. http://dx.doi.org/10.3390/en13154029.
Pełny tekst źródłaRelangi, Naresh, Lakshmi Narayana Phaneendra Peri, Caio Henrique Franco Levi Domingos, Amalia Fossella, Julia Meria Leite Henriques i Antonella Ingenito. "Design of Supersonic and Hybrid engine based Advanced Rocket (SHAR)". IOP Conference Series: Materials Science and Engineering 1226, nr 1 (1.02.2022): 012031. http://dx.doi.org/10.1088/1757-899x/1226/1/012031.
Pełny tekst źródłaFureby, Christer, Guillaume Sahut, Alessandro Ercole i Thommie Nilsson. "Large Eddy Simulation of Combustion for High-Speed Airbreathing Engines". Aerospace 9, nr 12 (1.12.2022): 785. http://dx.doi.org/10.3390/aerospace9120785.
Pełny tekst źródłaRelangi, Naresh, Antonella Ingenito i Suppandipillai Jeyakumar. "The Implication of Injection Locations in an Axisymmetric Cavity-Based Scramjet Combustor". Energies 14, nr 9 (4.05.2021): 2626. http://dx.doi.org/10.3390/en14092626.
Pełny tekst źródłaZhang, Junlong, Guangjun Feng, Guowei Luan, Hongchao Qiu i Wen Bao. "Research on combustion performance improvement by strut/wall combined injection in scramjet combustor". Thermal Science, nr 00 (2023): 92. http://dx.doi.org/10.2298/tsci220917092z.
Pełny tekst źródłaOsaka, Jun, Yoshitaka Uriuda, Osamu Imamura, Kiyotaka Yamashita, Shuhei Takahashi, Mitsuhiro Tsue i Michikata Kono. "Combustion Characteristics of Kerosene in a Scramjet Combustor". JOURNAL OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES 55, nr 637 (2007): 98–103. http://dx.doi.org/10.2322/jjsass.55.98.
Pełny tekst źródłaKay, I. W., W. T. Peschke i R. N. Guile. "Hydrocarbon-fueled scramjet combustor investigation". Journal of Propulsion and Power 8, nr 2 (marzec 1992): 507–12. http://dx.doi.org/10.2514/3.23505.
Pełny tekst źródłaDeepu, M., S. S. Gokhale i S. Jayaraj. "Numerical Modelling of Scramjet Combustor". Defence Science Journal 57, nr 4 (20.07.2007): 367–79. http://dx.doi.org/10.14429/dsj.57.1784.
Pełny tekst źródłaLi, Zhen, i Hongbin Gu. "Investigation for Effects of Jet Scale on Flame Stabilization in Scramjet Combustor". Energies 15, nr 10 (21.05.2022): 3790. http://dx.doi.org/10.3390/en15103790.
Pełny tekst źródłaWei, Bao Xi, Qiang Gang, Yan Zhang, Rong Jian Liu, Liang Tian i Xu Xu. "A Study on Performance Comparison of Integrated Aerodynamic-Ramp-Injector/ Gas-Portfire Flame Holder with Cavity". Applied Mechanics and Materials 390 (sierpień 2013): 8–11. http://dx.doi.org/10.4028/www.scientific.net/amm.390.8.
Pełny tekst źródłaManna, P., i D. Chakraborty. "Numerical investigation of transverse sonic injection in a non-reacting supersonic combustor". Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 219, nr 3 (1.03.2005): 205–15. http://dx.doi.org/10.1243/095441005x30261.
Pełny tekst źródłaFureby, C. "Large eddy simulation modelling of combustion for propulsion applications". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367, nr 1899 (28.07.2009): 2957–69. http://dx.doi.org/10.1098/rsta.2008.0271.
Pełny tekst źródłaCheng, Wen Qiang, Jing Yuan Liu i Rakesh Shrestha. "Insight in the Performance of Scramjet Combustor Based on Orthogonal Experimental Design". Advanced Materials Research 705 (czerwiec 2013): 463–67. http://dx.doi.org/10.4028/www.scientific.net/amr.705.463.
Pełny tekst źródłaWang, Z. P., H. B. Gu, L. W. Cheng, F. Q. Zhong i X. Y. Zhang. "CH* Luminance Distribution Application and a One-Dimensional Model of the Supersonic Combustor Heat Release Quantization". International Journal of Turbo & Jet-Engines 36, nr 1 (26.03.2019): 45–50. http://dx.doi.org/10.1515/tjj-2016-0064.
Pełny tekst źródłaSuppandipillai, Jeyakumar, Jayaraman Kandasamy, R. Sivakumar, Mehmet Karaca i Karthik K. "Numerical investigations on the hydrogen jet pressure variations in a strut based scramjet combustor". Aircraft Engineering and Aerospace Technology 93, nr 4 (5.04.2021): 566–78. http://dx.doi.org/10.1108/aeat-08-2020-0162.
Pełny tekst źródłaKanda, Takeshi, Nobuo Chinzei, Kenji Kudo, Atsuo Murakami i Tetsuo Hiraiwa. "Autoignited Combustion Testing in a Water-Cooled Scramjet Combustor". Journal of Propulsion and Power 20, nr 4 (lipiec 2004): 657–64. http://dx.doi.org/10.2514/1.11381.
Pełny tekst źródłaDharavath, Malsur, P. Manna i Debasis Chakraborty. "Thermochemical exploration of hydrogen combustion in generic scramjet combustor". Aerospace Science and Technology 24, nr 1 (styczeń 2013): 264–74. http://dx.doi.org/10.1016/j.ast.2011.11.014.
Pełny tekst źródłaLi, Xiang, Qingchun Lei, Xiaocun Zhao, Wei Fan, Shuang Chen, Li Chen, Ye Tian i Quan Zhou. "Combustion Characteristics of a Supersonic Combustor with a Large Cavity Length-to-Depth Ratio". Aerospace 9, nr 4 (14.04.2022): 214. http://dx.doi.org/10.3390/aerospace9040214.
Pełny tekst źródłaShi, Deyong, Wenyan Song, Jingfeng Ye, Bo Tao, Yanhua Wang i Qiang Fu. "Experimental Investigation of Reacting Flow Characteristics in a Dual-Mode Scramjet Combustor". International Journal of Turbo & Jet-Engines 35, nr 4 (19.12.2018): 321–30. http://dx.doi.org/10.1515/tjj-2015-0014.
Pełny tekst źródłaBordoloi, Namrata, Krishna Murari Pandey i Kaushal Kumar Sharma. "Numerical Investigation on the Effect of Inflow Mach Numbers on the Combustion Characteristics of a Typical Cavity-Based Supersonic Combustor". Mathematical Problems in Engineering 2021 (8.09.2021): 1–14. http://dx.doi.org/10.1155/2021/3526454.
Pełny tekst źródłaWang, Guangyu, Shijie Liu, Haoyang Peng i Weidong Liu. "Experimental Investigation of a Cylindrical Air-Breathing Continuous Rotating Detonation Engine with Different Nozzle Throat Diameters". Aerospace 9, nr 5 (16.05.2022): 267. http://dx.doi.org/10.3390/aerospace9050267.
Pełny tekst źródłaTao, C., Y. Daren i B. Wen. "Distributed parameter control arithmetic for an axisymmetrical dual-mode scramjet". Aeronautical Journal 112, nr 1135 (wrzesień 2008): 557–65. http://dx.doi.org/10.1017/s0001924000002517.
Pełny tekst źródłaSarosh, Ali, Dong Yun Feng i Muhammad Adnan. "An Aerothermodynamic Design Approach for Scramjet Combustors and Comparative Performance of Low-Efficiency Systems". Applied Mechanics and Materials 110-116 (październik 2011): 4652–60. http://dx.doi.org/10.4028/www.scientific.net/amm.110-116.4652.
Pełny tekst źródłaZhang, Qi, Weibing Zhu, Dongchao Yang i Hong Chen. "Numerical Investigation on Flame Stabilization of Cavity-Based Scramjet Combustor Using Compressible Modified FGM Model". International Journal of Chemical Engineering 2022 (8.02.2022): 1–21. http://dx.doi.org/10.1155/2022/8388827.
Pełny tekst źródłaTian, Ye, Wen Shi, Mingming Guo, Yuan Liu, Chenlin Zhang i Jialing Le. "Investigation of combustion characteristics in a hydrogen-fueled scramjet combustor". Acta Astronautica 186 (wrzesień 2021): 486–95. http://dx.doi.org/10.1016/j.actaastro.2021.06.021.
Pełny tekst źródłaTAKAHASHI, Shuhei, Kazunori WAKAI, Sadatake TOMIOKA, Mitsuhiro TSUE i Michikata KONO. "Interaction between Combustion and Flowfield in a Rectangular Scramjet Combustor." Journal of the Japan Society for Aeronautical and Space Sciences 46, nr 538 (1998): 633–39. http://dx.doi.org/10.2322/jjsass1969.46.633.
Pełny tekst źródłaTakahashi, Shuhei, Kazunori Wakai, Sadatake Tomioka, Mitsuhiro Tsue i Michikata Kono. "Effects of combustion on flowfield in a model scramjet combustor". Symposium (International) on Combustion 27, nr 2 (styczeń 1998): 2143–50. http://dx.doi.org/10.1016/s0082-0784(98)80062-3.
Pełny tekst źródłaNordin-Bates, K., C. Fureby, S. Karl i K. Hannemann. "Understanding scramjet combustion using LES of the HyShot II combustor". Proceedings of the Combustion Institute 36, nr 2 (2017): 2893–900. http://dx.doi.org/10.1016/j.proci.2016.07.118.
Pełny tekst źródła