Artykuły w czasopismach na temat „Scaffold based models”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Scaffold based models”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Massai, Diana, Francesco Pennella, Piergiorgio Gentile, Diego Gallo, Gianluca Ciardelli, Cristina Bignardi, Alberto Audenino i Umberto Morbiducci. "Image-Based Three-Dimensional Analysis to Characterize the Texture of Porous Scaffolds". BioMed Research International 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/161437.
Pełny tekst źródłaGao, Han Jun, Hao Yuan, Jian Qiang Xia, Hong Wei Li i Yi Du Zhang. "Design and Simulation of Ti6Al4V Cartilage Scaffold Based on Additive Manufacturing Technology". Materials Science Forum 1032 (maj 2021): 114–19. http://dx.doi.org/10.4028/www.scientific.net/msf.1032.114.
Pełny tekst źródłaFarina, Erica, Dario Gastaldi, Francesco Baino, Enrica Vernè, Jonathan Massera, Gissur Orlygsson i Pasquale Vena. "Micro computed tomography based finite element models for elastic and strength properties of 3D printed glass scaffolds". Acta Mechanica Sinica 37, nr 2 (luty 2021): 292–306. http://dx.doi.org/10.1007/s10409-021-01065-3.
Pełny tekst źródłaDamerau, Alexandra, Frank Buttgereit i Timo Gaber. "Optimization of a Tricalcium Phosphate-Based Bone Model Using Cell-Sheet Technology to Simulate Bone Disorders". Processes 10, nr 3 (11.03.2022): 550. http://dx.doi.org/10.3390/pr10030550.
Pełny tekst źródłaValdoz, Jonard Corpuz, Benjamin C. Johnson, Dallin J. Jacobs, Nicholas A. Franks, Ethan L. Dodson, Cecilia Sanders, Collin G. Cribbs i Pam M. Van Ry. "The ECM: To Scaffold, or Not to Scaffold, That Is the Question". International Journal of Molecular Sciences 22, nr 23 (24.11.2021): 12690. http://dx.doi.org/10.3390/ijms222312690.
Pełny tekst źródłaRojas-Rojas, Laura, María Laura Espinoza-Álvarez, Silvia Castro-Piedra, Andrea Ulloa-Fernández, Walter Vargas-Segura i Teodolito Guillén-Girón. "Muscle-like Scaffolds for Biomechanical Stimulation in a Custom-Built Bioreactor". Polymers 14, nr 24 (11.12.2022): 5427. http://dx.doi.org/10.3390/polym14245427.
Pełny tekst źródłaBasri, Hasan, Jimmy Deswidawansyah Nasution, Ardiyansyah Syahrom, Mohd Ayub Sulong, Amir Putra Md. Saad, Akbar Teguh Prakoso i Faisal Aminin. "The effect to flow rate characteristic on biodegradation of bone scaffold". Malaysian Journal of Fundamental and Applied Sciences 13, nr 4-2 (17.12.2017): 546–52. http://dx.doi.org/10.11113/mjfas.v13n4-2.843.
Pełny tekst źródłaAcevedo, Cristian A., Yusser Olguín, Nicole Orellana, Elizabeth Sánchez, Marzena Pepczynska i Javier Enrione. "Anatase Incorporation to Bioactive Scaffolds Based on Salmon Gelatin and Its Effects on Muscle Cell Growth". Polymers 12, nr 9 (28.08.2020): 1943. http://dx.doi.org/10.3390/polym12091943.
Pełny tekst źródłaPeng, Liqing, Bin Zhang, Xujiang Luo, Bo Huang, Jian Zhou, Shuangpeng Jiang, Weimin Guo i in. "Small Ruminant Models for Articular Cartilage Regeneration by Scaffold-Based Tissue Engineering". Stem Cells International 2021 (6.12.2021): 1–14. http://dx.doi.org/10.1155/2021/5590479.
Pełny tekst źródłaZhou, Yang, Gillian Pereira, Yuanzhang Tang, Matthew James i Miqin Zhang. "3D Porous Scaffold-Based High-Throughput Platform for Cancer Drug Screening". Pharmaceutics 15, nr 6 (9.06.2023): 1691. http://dx.doi.org/10.3390/pharmaceutics15061691.
Pełny tekst źródłaZHANG, XIANBIN, i HE GONG. "SIMULATION ON TISSUE DIFFERENTIATIONS FOR DIFFERENT ARCHITECTURE DESIGNS IN BONE TISSUE ENGINEERING SCAFFOLD BASED ON CELLULAR STRUCTURE MODEL". Journal of Mechanics in Medicine and Biology 15, nr 03 (czerwiec 2015): 1550028. http://dx.doi.org/10.1142/s0219519415500281.
Pełny tekst źródłaLi, Yan, Dichen Li, Bingheng Lu, Dajing Gao i Jack Zhou. "Current status of additive manufacturing for tissue engineering scaffold". Rapid Prototyping Journal 21, nr 6 (19.10.2015): 747–62. http://dx.doi.org/10.1108/rpj-03-2014-0029.
Pełny tekst źródłaTomar, Akanksha, Pinar Uysal-Onganer, Pooja Basnett, Uttam Pati i Ipsita Roy. "3D Disease Modelling of Hard and Soft Cancer Using PHA-Based Scaffolds". Cancers 14, nr 14 (21.07.2022): 3549. http://dx.doi.org/10.3390/cancers14143549.
Pełny tekst źródłaLi, Mingke, i Wangyu Liu. "A novel parameterized digital-mask generation method for projection stereolithography in tissue engineering". Rapid Prototyping Journal 24, nr 6 (13.08.2018): 935–44. http://dx.doi.org/10.1108/rpj-06-2017-0110.
Pełny tekst źródłaGerschenfeld, Gaspard, Rachida Aid, Teresa Simon-Yarza, Soraya Lanouar, Patrick Charnay, Didier Letourneur i Piotr Topilko. "Tuning Physicochemical Properties of a Macroporous Polysaccharide-Based Scaffold for 3D Neuronal Culture". International Journal of Molecular Sciences 22, nr 23 (25.11.2021): 12726. http://dx.doi.org/10.3390/ijms222312726.
Pełny tekst źródłaPalmroth, Aleksi, Sanna Pitkänen, Markus Hannula, Kaarlo Paakinaho, Jari Hyttinen, Susanna Miettinen i Minna Kellomäki. "Evaluation of scaffold microstructure and comparison of cell seeding methods using micro-computed tomography-based tools". Journal of The Royal Society Interface 17, nr 165 (kwiecień 2020): 20200102. http://dx.doi.org/10.1098/rsif.2020.0102.
Pełny tekst źródłaD’Andrea, Luca, Dario Gastaldi, Enrica Verné, Francesco Baino, Jonathan Massera, Gissur Örlygsson i Pasquale Vena. "Mechanical Properties of Robocast Glass Scaffolds Assessed through Micro-CT-Based Finite Element Models". Materials 15, nr 18 (13.09.2022): 6344. http://dx.doi.org/10.3390/ma15186344.
Pełny tekst źródłaAhsan, AMM, Ruinan Xie i Bashir Khoda. "Heterogeneous topology design and voxel-based bio-printing". Rapid Prototyping Journal 24, nr 7 (8.10.2018): 1142–54. http://dx.doi.org/10.1108/rpj-05-2017-0076.
Pełny tekst źródłaRevia, Richard A., Brandon Wagner, Matthew James i Miqin Zhang. "High-Throughput Dispensing of Viscous Solutions for Biomedical Applications". Micromachines 13, nr 10 (13.10.2022): 1730. http://dx.doi.org/10.3390/mi13101730.
Pełny tekst źródłaSHUAI, CIJUN, ZHONGZHENG MAO, CHENGDE GAO, JINGLIN LIU i SHUPING PENG. "DEVELOPMENT OF COMPLEX POROUS POLYVINYL ALCOHOL SCAFFOLDS: MICROSTRUCTURE, MECHANICAL, AND BIOLOGICAL EVALUATIONS". Journal of Mechanics in Medicine and Biology 13, nr 03 (14.05.2013): 1350034. http://dx.doi.org/10.1142/s0219519413500346.
Pełny tekst źródłaAlghuwainem, Ayidah, Alaa T. Alshareeda i Batla Alsowayan. "Scaffold-Free 3-D Cell Sheet Technique Bridges the Gap between 2-D Cell Culture and Animal Models". International Journal of Molecular Sciences 20, nr 19 (4.10.2019): 4926. http://dx.doi.org/10.3390/ijms20194926.
Pełny tekst źródłaKorpershoek, Jasmijn V., Tommy S. de Windt, Michella H. Hagmeijer, Lucienne A. Vonk i Daniel B. F. Saris. "Cell-Based Meniscus Repair and Regeneration: At the Brink of Clinical Translation?" Orthopaedic Journal of Sports Medicine 5, nr 2 (1.02.2017): 232596711769013. http://dx.doi.org/10.1177/2325967117690131.
Pełny tekst źródłaUiterwijk, M., D. C. van der Valk, R. van Vliet, I. J. de Brouwer, C. R. Hooijmans i J. Kluin. "Pulmonary valve tissue engineering strategies in large animal models". PLOS ONE 16, nr 10 (5.10.2021): e0258046. http://dx.doi.org/10.1371/journal.pone.0258046.
Pełny tekst źródłaUiterwijk, M., D. C. van der Valk, R. van Vliet, I. J. de Brouwer, C. R. Hooijmans i J. Kluin. "Pulmonary valve tissue engineering strategies in large animal models". PLOS ONE 16, nr 10 (5.10.2021): e0258046. http://dx.doi.org/10.1371/journal.pone.0258046.
Pełny tekst źródłaDias, Marlon Lemos, Bruno Andrade Paranhos i Regina Coeli dos Santos Goldenberg. "Liver scaffolds obtained by decellularization: A transplant perspective in liver bioengineering". Journal of Tissue Engineering 13 (styczeń 2022): 204173142211053. http://dx.doi.org/10.1177/20417314221105305.
Pełny tekst źródłaCastillo-Henríquez, Luis, Pablo Sanabria-Espinoza, Brayan Murillo-Castillo, Gabriela Montes de Oca-Vásquez, Diego Batista-Menezes, Briner Calvo-Guzmán, Nils Ramírez-Arguedas i José Vega-Baudrit. "Topical Chitosan-Based Thermo-Responsive Scaffold Provides Dexketoprofen Trometamol Controlled Release for 24 h Use". Pharmaceutics 13, nr 12 (6.12.2021): 2100. http://dx.doi.org/10.3390/pharmaceutics13122100.
Pełny tekst źródłaKinikoglu, Beste. "A Comparison of Scaffold-free and Scaffold-based Reconstructed Human Skin Models as Alternatives to Animal Use". Alternatives to Laboratory Animals 45, nr 6 (grudzień 2017): 309–16. http://dx.doi.org/10.1177/026119291704500607.
Pełny tekst źródłaTrif, Letitiţia. "Training Models of Social Constructivism. Teaching Based on Developing A Scaffold". Procedia - Social and Behavioral Sciences 180 (maj 2015): 978–83. http://dx.doi.org/10.1016/j.sbspro.2015.02.184.
Pełny tekst źródłaLøvset, Tyge, Dag Magne Ulvang, Tor Christian Bekkvik, Kåre Villanger i Ivan Viola. "Rule-based method for automatic scaffold assembly from 3D building models". Computers & Graphics 37, nr 4 (czerwiec 2013): 256–68. http://dx.doi.org/10.1016/j.cag.2013.01.007.
Pełny tekst źródłaMohd, Nurulhuda, Masfueh Razali, Mariyam Jameelah Ghazali i Noor Hayaty Abu Kasim. "3D-Printed Hydroxyapatite and Tricalcium Phosphates-Based Scaffolds for Alveolar Bone Regeneration in Animal Models: A Scoping Review". Materials 15, nr 7 (2.04.2022): 2621. http://dx.doi.org/10.3390/ma15072621.
Pełny tekst źródłaRicci, Claudio, Bahareh Azimi, Luca Panariello, Benedetta Antognoli, Beatrice Cecchini, Roberta Rovelli, Meruyert Rustembek i in. "Assessment of Electrospun Poly(ε-caprolactone) and Poly(lactic acid) Fiber Scaffolds to Generate 3D In Vitro Models of Colorectal Adenocarcinoma: A Preliminary Study". International Journal of Molecular Sciences 24, nr 11 (29.05.2023): 9443. http://dx.doi.org/10.3390/ijms24119443.
Pełny tekst źródłaSouto-Lopes, Mariana, Maria Helena Fernandes, Fernando Jorge Monteiro i Christiane Laranjo Salgado. "Bioengineering Composite Aerogel-Based Scaffolds That Influence Porous Microstructure, Mechanical Properties and In Vivo Regeneration for Bone Tissue Application". Materials 16, nr 12 (20.06.2023): 4483. http://dx.doi.org/10.3390/ma16124483.
Pełny tekst źródłaModi, Yashwant Kumar, i Kiran Kumar Sahu. "Process parameter optimization for porosity and compressive strength of calcium sulfate based 3D printed porous bone scaffolds". Rapid Prototyping Journal 27, nr 2 (28.01.2021): 245–55. http://dx.doi.org/10.1108/rpj-04-2020-0083.
Pełny tekst źródłaCordelle, Justine, i Sara Mantero. "Insight on the endothelialization of small silk-based tissue-engineered vascular grafts". International Journal of Artificial Organs 43, nr 10 (7.03.2020): 631–44. http://dx.doi.org/10.1177/0391398820906547.
Pełny tekst źródłaMa, Hailong, Shubo Xu, Xiaoyu Jun, Aijun Tang i Xinzhi Hu. "Finite Element Analysis of Renewable Porous Bones and Optimization of Additive Manufacturing Processes". Coatings 13, nr 5 (12.05.2023): 912. http://dx.doi.org/10.3390/coatings13050912.
Pełny tekst źródłados Santos, Kelvin Sousa, Lariane Teodoro Oliveira, Marina de Lima Fontes, Ketylin Fernanda Migliato, Ana Marisa Fusco-Almeida, Maria José Soares Mendes Giannini i Andrei Moroz. "Alginate-Based 3D A549 Cell Culture Model to Study Paracoccidioides Infection". Journal of Fungi 9, nr 6 (31.05.2023): 634. http://dx.doi.org/10.3390/jof9060634.
Pełny tekst źródłaWang, Yifan, Sunčica Čanić, Martina Bukač, Charles Blaha i Shuvo Roy. "Mathematical and Computational Modeling of Poroelastic Cell Scaffolds Used in the Design of an Implantable Bioartificial Pancreas". Fluids 7, nr 7 (1.07.2022): 222. http://dx.doi.org/10.3390/fluids7070222.
Pełny tekst źródłaMagini, Eduarda Blasi, Luiza de Oliveira Matos, Raissa Borges Curtarelli, Mariane Beatriz Sordi, Gabriel Leonardo Magrin, Carlos Flores-Mir, Reinhard Gruber i Ariadne Cristiane Cabral Cruz. "Simvastatin Embedded into Poly(Lactic-Co-Glycolic Acid)-Based Scaffolds in Promoting Preclinical Bone Regeneration: A Systematic Review". Applied Sciences 12, nr 22 (16.11.2022): 11623. http://dx.doi.org/10.3390/app122211623.
Pełny tekst źródłaFinoli, Anthony, Eva Schmelzer, Patrick Over, Ian Nettleship i Joerg C. Gerlach. "Open-Porous Hydroxyapatite Scaffolds for Three-Dimensional Culture of Human Adult Liver Cells". BioMed Research International 2016 (2016): 1–7. http://dx.doi.org/10.1155/2016/6040146.
Pełny tekst źródłaNizami, Bilal, Igor V. Tetko, Neil A. Koorbanally i Bahareh Honarparvar. "QSAR models and scaffold-based analysis of non-nucleoside HIV RT inhibitors". Chemometrics and Intelligent Laboratory Systems 148 (listopad 2015): 134–44. http://dx.doi.org/10.1016/j.chemolab.2015.09.011.
Pełny tekst źródłaJongpaiboonkit, Leenaporn, C. Y. Lin, P. H. Krebsbach, S. J. Hollister i J. W. Halloran. "Mechanical Behavior of Complex 3D Calcium Phosphate Cement Scaffolds Fabricated by Indirect Solid Freeform Fabrication In Vivo". Key Engineering Materials 309-311 (maj 2006): 957–60. http://dx.doi.org/10.4028/www.scientific.net/kem.309-311.957.
Pełny tekst źródłaCarotenuto, Felicia, Noemi Fiaschini, Paolo Di Nardo i Antonio Rinaldi. "Towards a Material-by-Design Approach to Electrospun Scaffolds for Tissue Engineering Based on Statistical Design of Experiments (DOE)". Materials 16, nr 4 (12.02.2023): 1539. http://dx.doi.org/10.3390/ma16041539.
Pełny tekst źródłaSatbhaiya, Shruti, i O. P. Chourasia. "Scaffold and cell line based approaches for QSAR studies on anticancer agents". RSC Advances 5, nr 103 (2015): 84810–20. http://dx.doi.org/10.1039/c5ra18295f.
Pełny tekst źródłaYang, Yadong, Geng Yang, Xingzhu Liu, Yimeng Xu, Siyu Zhao, Wenyuan Zhang i Mengjiao Xu. "Construction of Lung Tumor Model for Drug Screening Based on 3D Bio-Printing Technology". Journal of Biomaterials and Tissue Engineering 11, nr 7 (1.07.2021): 1213–26. http://dx.doi.org/10.1166/jbt.2021.2706.
Pełny tekst źródłaNewman, Kristen, Kendra Clark, Bhuvaneswari Gurumurthy, Pallabi Pal i Amol V. Janorkar. "Elastin-Collagen Based Hydrogels as Model Scaffolds to Induce Three-Dimensional Adipocyte Culture from Adipose Derived Stem Cells". Bioengineering 7, nr 3 (12.09.2020): 110. http://dx.doi.org/10.3390/bioengineering7030110.
Pełny tekst źródłaPazhanimala, Shaleena K., Driton Vllasaliu i Bahijja T. Raimi-Abraham. "Engineering Biomimetic Gelatin Based Nanostructures as Synthetic Substrates for Cell Culture". Applied Sciences 9, nr 8 (17.04.2019): 1583. http://dx.doi.org/10.3390/app9081583.
Pełny tekst źródłaLiu, Wangyu, i Mingke Li. "A new two-step adaptive direct slicing approach for bio-scaffolds in tissue engineering". Rapid Prototyping Journal 23, nr 6 (17.10.2017): 1170–84. http://dx.doi.org/10.1108/rpj-09-2016-0147.
Pełny tekst źródłaBaino, Francesco, Martin Schwentenwein i Enrica Verné. "Modelling the Mechanical Properties of Hydroxyapatite Scaffolds Produced by Digital Light Processing-Based Vat Photopolymerization". Ceramics 5, nr 3 (16.09.2022): 593–600. http://dx.doi.org/10.3390/ceramics5030044.
Pełny tekst źródłaRenno, Giacomo, Francesca Cardano, Giorgio Volpi, Claudia Barolo, Guido Viscardi i Andrea Fin. "Imidazo[1,5-a]pyridine-Based Fluorescent Probes: A Photophysical Investigation in Liposome Models". Molecules 27, nr 12 (16.06.2022): 3856. http://dx.doi.org/10.3390/molecules27123856.
Pełny tekst źródłaBOSCHETTI, FEDERICA, MARGHERITA CIOFFI, MANUELA TERESA RAIMONDI, FRANCESCO MIGLIAVACCA i GABRIELE DUBINI. "NEW TRENDS IN TISSUE ENGINEERED CARTILAGE: MICROFLUID DYNAMICS IN 3-D ENGINEERED CELL SYSTEMS". Journal of Mechanics in Medicine and Biology 05, nr 03 (wrzesień 2005): 455–64. http://dx.doi.org/10.1142/s0219519405001564.
Pełny tekst źródła