Gotowa bibliografia na temat „Satellite Soil Moisture Retrievals”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Satellite Soil Moisture Retrievals”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Satellite Soil Moisture Retrievals"
Zhang, Ke, Long Zhao, Kun Yang, Lisheng Song, Xiang Ni, Xujun Han, Mingguo Ma i Lei Fan. "Uncertainty Quantification of Satellite Soil Moisture Retrieved Precipitation in the Central Tibetan Plateau". Remote Sensing 15, nr 10 (16.05.2023): 2600. http://dx.doi.org/10.3390/rs15102600.
Pełny tekst źródłaGao, Huilin, Eric F. Wood, Matthias Drusch i Matthew F. McCabe. "Copula-Derived Observation Operators for Assimilating TMI and AMSR-E Retrieved Soil Moisture into Land Surface Models". Journal of Hydrometeorology 8, nr 3 (1.06.2007): 413–29. http://dx.doi.org/10.1175/jhm570.1.
Pełny tekst źródłaLiu, Y. Y., R. M. Parinussa, W. A. Dorigo, R. A. M. de Jeu, W. Wagner, A. I. J. M. van Dijk, M. F. McCabe i J. P. Evans. "Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals". Hydrology and Earth System Sciences Discussions 7, nr 5 (2.09.2010): 6699–724. http://dx.doi.org/10.5194/hessd-7-6699-2010.
Pełny tekst źródłaZhan, W., M. Pan, N. Wanders i E. F. Wood. "Correction of real-time satellite precipitation with satellite soil moisture observations". Hydrology and Earth System Sciences Discussions 12, nr 6 (16.06.2015): 5749–87. http://dx.doi.org/10.5194/hessd-12-5749-2015.
Pełny tekst źródłaGevaert, Anouk I., Luigi J. Renzullo, Albert I. J. M. van Dijk, Hans J. van der Woerd, Albrecht H. Weerts i Richard A. M. de Jeu. "Joint assimilation of soil moisture retrieved from multiple passive microwave frequencies increases robustness of soil moisture state estimation". Hydrology and Earth System Sciences 22, nr 9 (3.09.2018): 4605–19. http://dx.doi.org/10.5194/hess-22-4605-2018.
Pełny tekst źródłaLiu, Qing, Rolf H. Reichle, Rajat Bindlish, Michael H. Cosh, Wade T. Crow, Richard de Jeu, Gabrielle J. M. De Lannoy, George J. Huffman i Thomas J. Jackson. "The Contributions of Precipitation and Soil Moisture Observations to the Skill of Soil Moisture Estimates in a Land Data Assimilation System". Journal of Hydrometeorology 12, nr 5 (1.10.2011): 750–65. http://dx.doi.org/10.1175/jhm-d-10-05000.1.
Pełny tekst źródłaCrow, Wade T. "A Novel Method for Quantifying Value in Spaceborne Soil Moisture Retrievals". Journal of Hydrometeorology 8, nr 1 (1.02.2007): 56–67. http://dx.doi.org/10.1175/jhm553.1.
Pełny tekst źródłaMiralles, Diego G., Wade T. Crow i Michael H. Cosh. "Estimating Spatial Sampling Errors in Coarse-Scale Soil Moisture Estimates Derived from Point-Scale Observations". Journal of Hydrometeorology 11, nr 6 (1.12.2010): 1423–29. http://dx.doi.org/10.1175/2010jhm1285.1.
Pełny tekst źródłaSu, Z., J. Wen, L. Dente, R. van der Velde, L. Wang, Y. Ma, K. Yang i Z. Hu. "A plateau scale soil moisture and soil temperature observatory for quantifying uncertainties in coarse resolution satellite products". Hydrology and Earth System Sciences Discussions 8, nr 1 (17.01.2011): 243–76. http://dx.doi.org/10.5194/hessd-8-243-2011.
Pełny tekst źródłaFord, T. W., E. Harris i S. M. Quiring. "Estimating root zone soil moisture using near-surface observations from SMOS". Hydrology and Earth System Sciences Discussions 10, nr 6 (28.06.2013): 8325–64. http://dx.doi.org/10.5194/hessd-10-8325-2013.
Pełny tekst źródłaRozprawy doktorskie na temat "Satellite Soil Moisture Retrievals"
Piles, Guillem Maria. "Multiscale soil moisture retrievals from microwave remote sensing observations". Doctoral thesis, Universitat Politècnica de Catalunya, 2010. http://hdl.handle.net/10803/77910.
Pełny tekst źródłaSoil moisture is a key state variable of the Earth's system; it is the main variable that links the Earth's water, energy and carbon cycles. Accurate observations of the Earth's changing soil moisture are needed to achieve sustainable land and water management, and to enhance weather and climate forecasting skill, flood prediction and drought monitoring. This Thesis focuses on measuring the Earth's surface soil moisture from space at global and regional scales. Theoretical and experimental studies have proven that L-band passive remote sensing is optimal for soil moisture sensing due to its all-weather capabilities and the direct relationship between soil emissivity and soil water content under most vegetation covers. However, achieving a temporal and spatial resolution that could satisfy land applications has been a challenge to passive microwave remote sensing in the last decades, since real aperture radiometers would need a large rotating antenna, which is difficult to implement on a spacecraft. Currently, there are three main approaches to solving this problem: (i) the use of an L-band synthetic aperture radiometer, which is the solution implemented in the ESA Soil Moisture and Ocean Salinity (SMOS) mission, launched in November 2009; (ii) the use of a large lightweight radiometer and a radar operating at L-band, which is the solution adopted by the NASA Soil Moisture Active Passive (SMAP) mission, scheduled for launch in 2014; (iii) the development of pixel disaggregation techniques that could enhance the spatial resolution of the radiometric observations. The first part of this work focuses on the analysis of the SMOS soil moisture inversion algorithm, which is crucial to retrieve accurate soil moisture estimations from SMOS measurements. Different retrieval configurations have been examined using simulated SMOS data, considering (i) the option of adding a priori information from parameters dominating the land emission at L-band —soil moisture, roughness, and temperature, vegetation albedo and opacity— with different associated uncertainties and (ii) the use of vertical and horizontal polarizations separately, or the first Stokes parameter. An optimal retrieval configuration for SMOS is suggested. The spatial resolution of SMOS and SMAP radiometers (~ 40-50 km) is adequate for global applications, but is a limiting factor to its application in regional studies, where a resolution of 1-10 km is needed. The second part of this Thesis contains three novel downscaling approaches for SMOS and SMAP: • A deconvolution scheme for the improvement of the spatial resolution of SMOS observations has been developed, and results of its application to simulated SMOS data and airborne field experimental data show that it is feasible to improve the product of the spatial resolution and the radiometric sensitivity of the observations by 49% over land pixels and by 30% over sea pixels. • A downscaling algorithm for improving the spatial resolution of SMOS-derived soil moisture estimates using higher resolution MODIS visible/infrared data is presented. Results of its application to some of the first SMOS images show the spatial variability of SMOS-derived soil moisture observations is effectively captured at the spatial resolutions of 32, 16, and 8 km. • A change detection approach for combining SMAP radar and radiometer observations into a 10 km soil moisture product has been developed and validated using SMAP-like observations and airborne field experimental data. This work has been developed within the preparatory activities of SMOS and SMAP, the two first-ever satellites dedicated to monitoring the temporal and spatial variation on the Earth's soil moisture. The results presented contribute to get the most out of these vital observations, that will further our understanding of the Earth's water cycle, and will lead to a better water resources management.
Kolassa, Jana. "Soil moisture retrieval from multi-instrument satellite observations". Paris 6, 2013. http://www.theses.fr/2013PA066392.
Pełny tekst źródłaIn this thesis, a neural network based retrieval algorithm has been developed to compute surface soil moisture from a combination of microwave, infrared and visible satellite obser- vations. A global estimate of monthly mean soil moisture values has been computed for the period 1993-2000 and is provided on an equal-area grid with an equatorial resolution of 0. 25◦. This soil moisture estimate has been evaluated against modelled, remotely sensed and in situ observations and was found to perform well on different spatial and temporal scales. An information content showed that each of the various satellite observations con- tributes information about a different soil moisture variation, with the active microwave data being more sensitive to the temporal evolution and the thermal infrared data better capturing the spatial patterns. Furthermore, a synergy analysis revealed that the combina- tion of all observations permits a reduction of the retrieval uncertainty by more than 18% and that the neural network methodology optimally exploits the synergy of observations compared to other approaches. A joint analysis of various remotely sensed datasets of ter- restrial water cycle components demonstrated the coherence of the retrieved soil moisture with other retrieval products and with global hydrological processes. This underlined its potential to be used for observation-based studies of the terrestrial water cycle. Finally, it has been shown that the proposed neural network methodology also provides an effective tool to evaluate Earth System Models on both a variable and a process basis
Kong, Xin. "Near-surface soil moisture retrieval at field and regional scales in UK : coupling of field measurements, a dynamic model and satellite imagery". Thesis, University of East Anglia, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.429801.
Pełny tekst źródłaSoriano, Melissa. "Estimation of soil moisture in the southern united states in 2003 using multi-satellite remote sensing measurements". Fairfax, VA : George Mason University, 2008. http://hdl.handle.net/1920/3361.
Pełny tekst źródłaVita: p. 65. Thesis director: John Qu. Submitted in partial fulfillment of the requirements for the degree of Master of Science in Earth System Science. Title from PDF t.p. (viewed Jan. 11, 2009). Includes bibliographical references (p. 59-64). Also issued in print.
Baban, Serwan M. J. "The derivations of hydrological variables (including soil moisture) from satellite imagery". Thesis, University of East Anglia, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.292298.
Pełny tekst źródłaHaas, Jan. "Soil moisture modelling using TWI and satellite imagery in the Stockholm region". Thesis, KTH, Geoinformatik och Geodesi, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-49704.
Pełny tekst źródłaSrivastava, Prashant K. "Soil moisture estimation from SMOS satellite and mesoscale model for hydrological applications". Thesis, University of Bristol, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.617590.
Pełny tekst źródłaTimoncini, Marta. "Detection of soil moisture under changing vegetation cover using synthetic aperture radar satellite imagery". Thesis, Queen Mary, University of London, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.430133.
Pełny tekst źródłaZhuo, Lu. "Advances in enhanced compatibility between satellite remote sensing of soil moisture and hydrological modelling". Thesis, University of Bristol, 2016. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.702218.
Pełny tekst źródłaAl-Shrafany, Deleen Mohammed Saleh. "Soil moisture estimation using satellite remote sensing and numerical weather prediction model for hydrological applications". Thesis, University of Bristol, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.574260.
Pełny tekst źródłaKsiążki na temat "Satellite Soil Moisture Retrievals"
Wolfgang, Wagner. Soil moisture retrieval from ERS scatterometer data. Wien: Veröffentlichung des Instituts für Photogrammetrie und Fernerkundung, 1998.
Znajdź pełny tekst źródłaDąbrowska-Zielińska, Katarzyna. Szacowanie ewapotranspiracji wilgotności gleb i masy zielonej łąk na podstawie zdjęć satelitarnych NOAA =: Assessment of evapotranspiration, soil moisture and green biomass of grassland using NOAA satellite images. Wrocław: Wydawn. Continuo, 1995.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration., red. An investigation of satellite sounding products for the remote sensing of the surface energy balance and soil moisture. Madison, WI: Cooperative Institute for Meteorological Satellite Studies, Space Science and Engineering Center, University of Wisconsin-Madison, 1990.
Znajdź pełny tekst źródłaFöldes, Péter. A design study for the use of a multiple aperture deployable antenna for soil moisture remote senisng satellite applications. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1986.
Znajdź pełny tekst źródłaCenter, Langley Research, red. A design study for the use of a multiple aperture deployable antenna for soil moisture remote sensing satellite applications. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1986.
Znajdź pełny tekst źródłaCarroll, Thomas R. Airborne gamma radiation snow water equivalent and soil moisture measurements and satellite areal extent of snow cover measurements: A user's guide : version 3.0. Minneapolis, Minn: Office of Hydrology, National Weather Service, National Oceanic and Atmospheric Administration, U.S. Dept. of Commerce, 1988.
Znajdź pełny tekst źródłaCenter, Langley Research, red. A conceptual thermal design study of an electronically scanned thinned array radiometer. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1995.
Znajdź pełny tekst źródłaSatellite Soil Moisture Retrieval. Elsevier, 2016. http://dx.doi.org/10.1016/c2014-0-03396-5.
Pełny tekst źródłaSrivastava, Prashant K., George Petropoulos i Y. H. Kerr. Satellite Soil Moisture Retrieval: Techniques and Applications. Elsevier Science & Technology Books, 2016.
Znajdź pełny tekst źródłaSrivastava, Prashant K., Y. H. Kerr i George P. Petropoulos. Satellite Soil Moisture Retrieval: Techniques and Applications. Elsevier, 2016.
Znajdź pełny tekst źródłaCzęści książek na temat "Satellite Soil Moisture Retrievals"
K., Anush Kumar, Raj Setia, Dharmendra Kumar Pandey, Deepak Putrevu, Arundhati Misra i Brijendra Pateriya. "Soil Moisture Retrieval Techniques Using Satellite Remote Sensing". W Geospatial Technologies for Crops and Soils, 357–85. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6864-0_10.
Pełny tekst źródłaCiabatta, Luca, Stefania Camici, Christian Massari, Paolo Filippucci, Sebastian Hahn, Wolfgang Wagner i Luca Brocca. "Soil Moisture and Precipitation: The SM2RAIN Algorithm for Rainfall Retrieval from Satellite Soil Moisture". W Advances in Global Change Research, 1013–27. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35798-6_27.
Pełny tekst źródłaHirpa, Feyera A., Mekonnen Gebremichael, Thomas M. Hopson, Rafal Wojick i Haksu Lee. "Assimilation of Satellite Soil Moisture Retrievals into a Hydrologic Model for Improving River Discharge". W Remote Sensing of the Terrestrial Water Cycle, 319–29. Hoboken, NJ: John Wiley & Sons, Inc, 2014. http://dx.doi.org/10.1002/9781118872086.ch19.
Pełny tekst źródłaLi, Jiangyang, Yongchao Zhu, Tingye Tao i Juntao Wang. "Soil Moisture Retrieval Based on Satellite-Borne GNSS-R Technology". W Lecture Notes in Electrical Engineering, 54–59. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3138-2_6.
Pełny tekst źródłaJackson, Thomas J., Michael Cosh i Wade Crow. "Some Issues in Validating Satellite-Based Soil Moisture Retrievals from SMAP with in Situ Observations". W Remote Sensing of the Terrestrial Water Cycle, 245–53. Hoboken, NJ: John Wiley & Sons, Inc, 2014. http://dx.doi.org/10.1002/9781118872086.ch15.
Pełny tekst źródłaZaman, Rawfin, William W. Edmonson i Manoj K. Jha. "Designing a Remote In Situ Soil Moisture Sensor Network for Small Satellite Data Retrieval". W Proceedings of the 2013 National Conference on Advances in Environmental Science and Technology, 35–46. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-19923-8_4.
Pełny tekst źródłaArya, K. V., i Suggula Jagadeesh. "Time Series Forecasting of Soil Moisture Using Satellite Images". W Communications in Computer and Information Science, 385–97. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-07005-1_33.
Pełny tekst źródłaPalagiri, Hussain, i Manali Pal. "Agricultural Drought Assessment Using Satellite-Based Surface Soil Moisture Estimate". W Disaster Resilience and Green Growth, 411–31. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-7100-6_22.
Pełny tekst źródłaKuenzer, Claudia, Ursula Gessner i Wolfgang Wagner. "Soil Moisture from Thermal Infrared Satellite Data: Synergies with Microwave Data". W Thermal Infrared Remote Sensing, 315–30. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6639-6_16.
Pełny tekst źródłaEnenkel, Markus, Daniel Osgood i Bristol Powell. "The Added Value of Satellite Soil Moisture for Agricultural Index Insurance". W Remote Sensing of Hydrometeorological Hazards, 69–83. Boca Raton, FL : Taylor & Francis, 2018.: CRC Press, 2017. http://dx.doi.org/10.1201/9781315154947-4.
Pełny tekst źródłaStreszczenia konferencji na temat "Satellite Soil Moisture Retrievals"
"Assimilating satellite soil moisture retrievals to improve operational water balance modelling". W 23rd International Congress on Modelling and Simulation (MODSIM2019). Modelling and Simulation Society of Australia and New Zealand, 2019. http://dx.doi.org/10.36334/modsim.2019.h6.tian.
Pełny tekst źródłaOwe, Manfred, Thomas R. H. Holmes i Richard A. M. De Jeu. "Spatial distributions of global soil moisture retrievals from satellite microwave observations". W Remote Sensing, redaktorzy Manfred Owe, Guido D'Urso, Ben T. Gouweleeuw i Anne M. Jochum. SPIE, 2004. http://dx.doi.org/10.1117/12.565257.
Pełny tekst źródłaChen, Huailiang, Xiangde Xu, Yujie Liu, Yusheng Li i Shitao Wang. "Soil moisture prediction based on retrievals from satellite sensing and a regional climate model". W Optics & Photonics 2005, redaktorzy Wei Gao i David R. Shaw. SPIE, 2005. http://dx.doi.org/10.1117/12.616557.
Pełny tekst źródłaBolten, J., W. Crow, X. Zhan i C. Reynolds. "Implementation of a global-scale operational data assimilation system for satellite-based soil moisture retrievals". W Optical Engineering + Applications, redaktorzy Mitchell D. Goldberg, Hal J. Bloom, Philip E. Ardanuy i Allen H. Huang. SPIE, 2008. http://dx.doi.org/10.1117/12.795272.
Pełny tekst źródłaLu, Hui, Wei Wang, Fuqiang Tian i Kun Yang. "Improving satellite rainfall estimates over Tibetan plateau using in situ soil moisture observation and SMAP retrievals". W 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, 2017. http://dx.doi.org/10.1109/igarss.2017.8127375.
Pełny tekst źródłaSanti, E., S. Paloscia, P. Pampaloni, S. Pettinato i M. Brogioni. "Retrieval of soil moisture with airborne and satellite microwave sensors". W 2009 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2009. http://dx.doi.org/10.1109/igarss.2009.5418252.
Pełny tekst źródłaShi, J., E. Njoku, T. Jackson i P. O'Neill. "Evaluation of Potential Error Sources for Soil Moisture Retrieval from Satellite Microwave Radiometer". W 2006 IEEE International Symposium on Geoscience and Remote Sensing. IEEE, 2006. http://dx.doi.org/10.1109/igarss.2006.118.
Pełny tekst źródłaCros, S., A. Chanzy, T. Pellarin, J. C. Calvet i J. P. Wigneron. "Using Optical Satellite based Data to Improve Soil Moisture Retrieval from SMOS Mission". W 2006 IEEE International Symposium on Geoscience and Remote Sensing. IEEE, 2006. http://dx.doi.org/10.1109/igarss.2006.523.
Pełny tekst źródłaZhou, Guoqing, Yue Sun, Linjun Jiang, Na Liu, Chenyang Li, Mingyan Li i Tao Yue. "Comparison and analysis of soil moisture retrieval model from CBERS-02B satellite imagery". W IGARSS 2015 - 2015 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2015. http://dx.doi.org/10.1109/igarss.2015.7325854.
Pełny tekst źródłaTsagkatakis, Grigorios, Mahta Moghaddam i Panagiotis Tsakalides. "Deep multi-modal satellite and in-situ observation fusion for Soil Moisture retrieval". W IGARSS 2021 - 2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021. http://dx.doi.org/10.1109/igarss47720.2021.9553848.
Pełny tekst źródłaRaporty organizacyjne na temat "Satellite Soil Moisture Retrievals"
Pradhan, Nawa Raj. Estimating growing-season root zone soil moisture from vegetation index-based evapotranspiration fraction and soil properties in the Northwest Mountain region, USA. Engineer Research and Development Center (U.S.), wrzesień 2021. http://dx.doi.org/10.21079/11681/42128.
Pełny tekst źródłaThoma, David. Landscape phenology, vegetation condition, and relations with climate at Canyonlands National Park, 2000–2019. Redaktor Alice Wondrak Biel. National Park Service, czerwiec 2023. http://dx.doi.org/10.36967/2299619.
Pełny tekst źródłaThoma, David. Landscape phenology, vegetation condition, and relations with climate at Capitol Reef National Park, 2000–2019. Redaktor Alice Wondrak Biel. National Park Service, marzec 2023. http://dx.doi.org/10.36967/2297289.
Pełny tekst źródła