Gotowa bibliografia na temat „Satellite docking”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Satellite docking”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Satellite docking"
Bai, Bingtao, Lurui Xia i Sen Li. "Design and dynamics simulation of axial radial double locking satellite docking mechanism". Journal of Physics: Conference Series 2569, nr 1 (1.08.2023): 012020. http://dx.doi.org/10.1088/1742-6596/2569/1/012020.
Pełny tekst źródłaJianbin, Huang, Li Zhi, Huang Longfei, Meng Bo, Han Xu i Pang Yujia. "Docking mechanism design and dynamic analysis for the GEO tumbling satellite". Assembly Automation 39, nr 3 (5.08.2019): 432–44. http://dx.doi.org/10.1108/aa-12-2017-191.
Pełny tekst źródłaSeweryn, Karol, i Jurek Z. Sasiadek. "Satellite angular motion classification for active on-orbit debris removal using robots". Aircraft Engineering and Aerospace Technology 91, nr 2 (4.02.2019): 317–32. http://dx.doi.org/10.1108/aeat-01-2018-0049.
Pełny tekst źródłaYu, Feng, Yi Zhao i Yanhua Zhang. "Pose Determination for Malfunctioned Satellites Based on Depth Information". International Journal of Aerospace Engineering 2019 (11.06.2019): 1–15. http://dx.doi.org/10.1155/2019/6895628.
Pełny tekst źródłaTAKEBAYASHI, Shinichi, i Satoshi TAKEZAWA. "Synchronous Position Control Method for Satellite Docking System". Proceedings of the JSME annual meeting 2000.2 (2000): 553–54. http://dx.doi.org/10.1299/jsmemecjo.2000.2.0_553.
Pełny tekst źródłaLiang, Jianxun, i Ou Ma. "Angular velocity tracking for satellite rendezvous and docking". Acta Astronautica 69, nr 11-12 (grudzień 2011): 1019–28. http://dx.doi.org/10.1016/j.actaastro.2011.07.009.
Pełny tekst źródłaZhang, Yuan, Ying Ying Wang, Yan Song i Li Li Zhou. "Kinematics Analysis and Simulation of Small Satellite Docking Mechanism End Executor". Applied Mechanics and Materials 487 (styczeń 2014): 460–64. http://dx.doi.org/10.4028/www.scientific.net/amm.487.460.
Pełny tekst źródłaYongZhi, Wen, Zhang ZeJian i Wu Jie. "High-Precision Navigation Approach of High-Orbit Spacecraft Based on Retransmission Communication Satellites". Journal of Navigation 65, nr 2 (12.03.2012): 351–62. http://dx.doi.org/10.1017/s0373463311000671.
Pełny tekst źródłaUi, Kyoichi, Saburo Matunaga, Shin Satori i Tomohiro Ishikawa. "Microgravity experiments of nano-satellite docking mechanism for final rendezvous approach and docking phase". Microgravity - Science and Technology 17, nr 3 (wrzesień 2005): 56–63. http://dx.doi.org/10.1007/bf02872088.
Pełny tekst źródłaSomov, Ye I., S. A. Butyrin, S. Ye Somov i T. Ye Somova. "DYNAMICS OF MOORING AND DOCKING OF A SPACE ROBOT-MANIPULATOR WITH A GEOSTATIOONARY SATELLITE". Izvestiya of Samara Scientific Center of the Russian Academy of Sciences 24, nr 4 (2022): 155–60. http://dx.doi.org/10.37313/1990-5378-2022-24-4-155-160.
Pełny tekst źródłaRozprawy doktorskie na temat "Satellite docking"
Mienie, Dewald. "Autonomous docking for a satellite pair using monocular vision". Thesis, Stellenbosch : University of Stellenbosch, 2009. http://hdl.handle.net/10019.1/2382.
Pełny tekst źródłaAutonomous rendezvouz and docking is seen as an enabling technology. It allows, among others, the construction of larger space platforms in-orbit and also provides a means for the in-orbit servicing of space vehicles. In this thesis a docking sequence is proposed and tested in both simulation and practice. This therefore also requires the design and construction of a test platform. A model hovercraft is used to emulate the chaser satellite in a 2-dimensional plane as it moves relatively frictionlessly. The hovercraft is also equipped with a single camera (monocular vision) that is used as the main sensor to estimate the target’s pose (relative position and orientation). An imitation of a target satellite was made and equipped with light markers that are used by the chaser’s camera sensor. The position of the target’s lights in the image is used to determine the target’s pose using a modified version ofMalan’s Extended Kalman Filter [20]. This information is then used during the docking sequence. This thesis successfully demonstrated the autonomous and reliable identification of the target’s lights in the image, and the autonomous docking of a satellite pair using monocular camera vision in both simulation and emulation.
Miller, Duncan Lee. "Development of resource-constrained sensors and actuators for in-space satellite docking and servicing". Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/98697.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (pages 171-177).
Most satellites on-orbit today are not intended to physically approach or interact with other spacecraft. However, the robotic servicing of orbiting assets will be an economically desirable (and often scientifically necessary) capability in future space enterprises. With the right set of tools and technologies, satellites will be able to autonomously refuel, repair, or replace each other. This has the potential to extend mission lifetimes, reduce orbital debris and make space more sustainable. Spacecraft may also assemble on-orbit into larger aggregate spaceflight systems, with applications to sparse aperture telescopes, solar power stations, fuel depots and space habitats. The purpose of this thesis is to address the highest risk elements associated with the docking and servicing of satellites: the sensors, actuators, and associated algorithms. First, a peripheral agnostic robotics platform is introduced, upon which a suite of technology payloads may be developed. Next, a flight qualified docking port for small satellites is presented, and the results detailing its operation in a relevant environment are discussed. In addition, we review a high precision relative sensor designed to enable boresight visual docking. The measurements from this optical camera are applied to a nonlinear estimator to provide the highly accurate sensing necessary for docking. Finally, a free-flying robotic arm is examined and modeled as an experimental payload for the SPHERES Facility on the International Space Station.
by Duncan Lee Miller.
S.M.
Nolet, Simon 1975. "Development of a guidance, navigation and control architecture and validation process enabling autonomous docking to a tumbling satellite". Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/39697.
Pełny tekst źródłaIncludes bibliographical references (p. 307-324).
The capability to routinely perform autonomous docking is a key enabling technology for future space exploration, as well as assembly and servicing missions for spacecraft and commercial satellites. Particularly, in more challenging situations where the target spacecraft or satellite is tumbling, algorithms and strategies must be implemented to ensure the safety of both docking entities in the event of anomalies. However, difficulties encountered in past docking missions conducted with expensive satellites on orbit have indicated a lack of maturity in the technologies required for such operations. Therefore, more experimentation must be performed to improve the current autonomous docking capabilities. The main objectives of the research presented in this thesis are to develop a guidance, navigation and control (GN&C) architecture that enables the safe and fuel-efficient docking with a free tumbling target in the presence of obstacles and anomalies, and to develop the software tools and verification processes necessary in order to successfully demonstrate the GN&C architecture in a relevant environment. The GN&C architecture was developed by integrating a spectrum of GN&C algorithms including estimation, control, path planning, and failure detection, isolation and recovery algorithms.
(cont.) The algorithms were implemented in GN&C software modules for real-time experimentation using the Synchronized Position Hold Engage and Reorient Experimental Satellite (SPHERES) facility that was created by the MIT Space Systems Laboratory. Operated inside the International Space Station (ISS), SPHERES allow the incremental maturation of formation flight and autonomous docking algorithms in a risk-tolerant, microgravity environment. Multiple autonomous docking operations have been performed in the ISS to validate the GN&C architecture. These experiments led to the first autonomous docking with a tumbling target ever achieved in microgravity. Furthermore, the author also demonstrated successful docking in spite of the presence of measurement errors that were detected and rejected by an online fault detection algorithm. The results of these experiments will be discussed in this thesis. Finally, based on experiments in a laboratory environment, the author establishes two processes for the verification of GN&C software prior to on-orbit testing on the SPHERES testbed.
by Simon Nolet.
Sc.D.
Antonello, Andrea. "Design of a robotic arm for laboratory simulations of spacecraft proximity navigation and docking". Doctoral thesis, Università degli studi di Padova, 2017. http://hdl.handle.net/11577/3426208.
Pełny tekst źródłaIl crescente numero di oggetti umani nello spazio ha posto le basi per una nuova classe di missioni orbitali per l'assistenza e la manutenzione. L'obiettivo principale di questa tesi è lo sviluppo, la costruzione e la verifica sperimentale di un manipolatore robotico per la simulazione di manovre orbitali, con particolare attenzione alla rimozione di detriti (ADR) e la manutenzione in orbita (OOS). Allo stato dell'arte, sono poche le modalità utilizzate per la riproduzione della microgravità in un ambiente non-orbitale: fra le tecniche principali, vale la pena ricordare voli parabolici, simulazioni in piscina e simulatori robotici. I voli parabolici consentono di riprodurre le condizioni orbitali abbastanza fedelmente, ma le condizioni di simulazione sono pesantemente vincolanti. Le simulazioni in piscina, d'altra parte, hanno meno costrizioni in termini di costo, ma la resistenza indotta dall'acqua influisce negativamente sulla qualità della microgravità simulata. Gli impianti robotizzati, infine, permettono di riprodurre indirettamente (cioè attraverso un adeguato sistema di controllo) la fisica della microgravità. Lo stato dell'arte sulle simulazioni robotiche 3D è oggi limitato a robot industriali, caratterizzati da notevoli costi sia in termini di hardware che di manutenzione. Questo progetto propone un'alternativa a queste strutture: attraverso algoritmi dedicati, il sistema è in grado di calcolare in tempo reale le conseguenze dei contatti tramite le opportune modifiche alla traiettoria, che vengono poi fornite al sistema di controllo "hardware in the loop" (HIL). Inoltre, il software può essere comandato per eseguire manovre attive e di "relocation": di conseguenza, il manipolatore può essere utilizzato come test-bed non solo per operazioni di manutenzione orbitale, ma anche per sistemi di controllo di assetto, fornendo una fedele simulazione in tempo reale del rispettivo comportamento in assenza di gravità. La tesi descrive la progettazione meccanica dettagliata della struttura, corroborata dalla rispettiva modellazione strutturale, e dalla verifica agli elementi finiti delle prestazioni statiche e vibrazionali. Viene successivamente presentata una strategia per la simulazione di contatti tramite il matching tra le impedenze e un controllore dedicato definisce l'insieme delle proprietà inerziali simulabili tramite la struttura. Concentrandosi sugli scenari di simulazione, viene poi presentato un innovativo approccio SLAM (simultaneous localization and mapping) che utilizza metodi stocastici per il design di traiettorie di ispezione e riconoscimento markers applicato ad un task di rendez-vous 3D. Infine, con l'obiettivo di fornire una sensor-suite capace di stimare in real-time l'assetto dell'end-effector, viene descritto un innovativo sensore di Sole miniaturizzato. Ne vengono discusse la progettazione e la fabbricazione, corroborate dalle necessarie verifiche sperimentali.
Mastromarco, Vincenzo. "Studio preliminare di un satellite per la cattura multipla di detriti spaziali attraverso meccanismo a rete". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/15667/.
Pełny tekst źródłaFejzić, Amer. "Development of control and autonomy algorithms for docking to complex tumbling satellites". Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/46369.
Pełny tekst źródłaThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
MIT Institute Archives copy: with DVD; divisional library copy with no DVD.
Includes bibliographical references (p. 171-173).
The capability of automated rendezvous and docking is a key enabling technology for many government and commercial space programs. Future space systems will employ a high level of autonomy to acquire, repair, refuel, and reconfigure satellites. Several programs have demonstrated a subset of the necessary autonomous docking technology; however, none has demonstrated online path planning in-space necessary for safe automated docking. Particularly, when a docking mission is sent to service an uncooperative spacecraft that is freely tumbling. In order to safely maneuver about an uncontrolled satellite, an online trajectory planning algorithm with obstacle avoidance employed in a GN&C architecture is necessary. The main research contributions of this thesis is the development of an efficient sub-optimal path planning algorithm coupled with an optimal feedback control law to successfully execute safe maneuvers for docking to tumbling satellites. First, an autonomous GN&C architecture is presented that divides the docking mission into four phases, each uniquely using the algorithms within to perform their objectives. For reasons of safety and fuel efficiency, a new sub-optimal spline-based trajectory planning algorithm with obstacle avoidance of the uncooperative spacecraft is presented. This algorithm is shown to be computationally efficient and computes desirable trajectories to a complex moving docking port of the tumbling spacecraft. As a realistic space system includes external disturbances and noises in sensor measurement and control actuation, a closed-loop form of control is necessary to maneuver the spacecraft. Therefore, several optimal feedback control laws are developed to track a trajectory provided by the path planner. Performance requirements for the tracking controllers are defined for the case of two spacecraft docking. With these requirements, the selection of a controller is narrowed down to a phase-plane switching between LQR and servo-LQR control laws.
(cont.) The autonomous GN&C architecture with the spline-based path planning algorithm and phase-plane controller is validated with simulations and hardware experiments using the Synchronized Position Hold Engage and Reorient Satellites (SPHERES) testbed aboard the International Space Station (ISS). Utilizing the unique space environment provided by the ISS, the experiment is the first in-space demonstration of an online path planning algorithm. Both the flight and simulation tests successfully validated the capabilities of the autonomous control system to dock to a complex tumbling satellite. The contributions in this thesis advance and validate a GN&C architecture that builds on a legacy in autonomous docking of spacecraft.
by Amer Fejzić.
S.M.
Porter, Robert D. "Development and control of the Naval Postgraduate School Planar Autonomous Docking Simulator (NPADS) /". Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2002. http://library.nps.navy.mil/uhtbin/hyperion-image/02sep%5FPorter.pdf.
Pełny tekst źródłaThesis advisor(s): Michael G. Spencer, Brij N. Agrawal. Includes bibliographical references (p. 83). Also available online.
Olivieri, Lorenzo. "Development and characterization of a standardized docking system for small spacecraft". Doctoral thesis, Università degli studi di Padova, 2015. http://hdl.handle.net/11577/3423898.
Pełny tekst źródłaFin dalla prima manovra di ancoraggio avvenuta nel 1966, molti e differenti meccanismi di docking sono stati sviluppati, per lo più per satlliti dotati di equipaggio. I pochi sistemi recentemente concepiti per piccoli satelliti non sono mai stati testati in spazio né scalati alle dimensioni adeguate per essere installati su CubeSat. Nel prossimo futuro, vi potrebbe essere un crescente interesse nello sviluppo di adeguate procedure di docking per piccoli veicoli, per realizzare strutture interdipendenti di satelliti, capaci di distribuire e condividere le proprie risorse: infatti, il mercato relativo a tali veicoli è in continua e costante crescita, concentrandosi su applicazioni commerciali a basso rischio e missioni scientifiche o educazionali a basso costo. In questo contesto, questo documento presenta un innovativo meccanismo di docking, capace di dare ai piccoli satelliti la capacità di agganciarsi e separarsi nello spazio, consentendo la realizzazione di piattaforme multicomponente intercambiabili, autoriparabili e aggiornabili tramite l'aggiunta di nuovi moduli, così da superare gli attuali limiti tecnologici imposti dalle limitate risorse disponibili a bordo dei singoli satelliti. Le interfaccie di docking fino ad ora realizzate presentano (1) sistemi maschio-femmina assai semplici ma ovviamente incapaci di agganciarsi a porte dello stesso genere, o (2) geometrie androgine, che pur evitando tale problematica risultano utilizzarre meccanismi complessi e non assialsimmetrici, richiedendo quindi strategie di navigazione e controllo d'assetto molto complicate e robuste. La soluzione proposta vuole superare le limitiazioni precedentemente menzionate, utilizzando un meccanismo muta-forma semiandrogino, capace di cambiare la forma dell'interfaccia in "femmina" così da consentire la penetrazione da parte di una porta equivalente ma non attuata, catturandola e realizzando l'aggancio. La progettazione del meccanismo ha seguito un processo logico, dalla definizione di una serie di requisiti al confronto tra soluzioni concettuali concorrenti, per concludersi con l'analisi del suo comportamento dinamico, dedicando particolare attenzione a due aspetti critici, la trasmissione dei carichi e le tolleranze di allineamento richieste durante una manovra di docking. Tali analisi sono state seguite dalla realizzazione di un prototipo instrumentato, utilizzato per verificare in laboratorio la funzionalità del meccanismo e definire precisamente i valori di tali tolleranze, che giacciono in un intervallo di discostamenti compreso tra +-15 mm e 6 gradi. Infine, un paragone con l'interfaccia UDP di SPHERES viene brevemente presentato, all'interno di una più ampia descrizione delle attività condotte durante un periodo di visita presso lo Space Systems Laboratory del Massachusetts Institute of Technology.
Bondoky, Karim [Verfasser], Klaus [Gutachter] Janschek i Stefanos [Gutachter] Fasoulas. "A Contribution to Validation and Testing of Non-Compliant Docking Contact Dynamics of Small and Rigid Satellites Using Hardware-In-The-Loop Simulation / Karim Bondoky ; Gutachter: Klaus Janschek, Stefanos Fasoulas". Dresden : Technische Universität Dresden, 2020. http://d-nb.info/122783313X/34.
Pełny tekst źródła"Small Satellite Electromagnetic Docking System Modeling and Control". Master's thesis, 2018. http://hdl.handle.net/2286/R.I.49051.
Pełny tekst źródłaDissertation/Thesis
Masters Thesis Electrical Engineering 2018
Książki na temat "Satellite docking"
Fehse, Dr Wigbert. Automated Rendezvous and Docking of Spacecraft (Cambridge Aerospace Series). Cambridge University Press, 2008.
Znajdź pełny tekst źródłaCzęści książek na temat "Satellite docking"
Wei, Wang, Chai Qiang, Gao Weiguang, Lu Jun, Shao Shihai, Bai Yu, Niu Jingyi, Feng Wenjing i Li Shaoqian. "The Design and Implementation of Global Navigation Satellite System Remote Docking Test Platform". W Wireless and Satellite Systems, 247–58. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69072-4_21.
Pełny tekst źródłaJarzebowska, Elzbieta, i Michal Szwajewski. "A Docking Maneuver Scenario of a Servicing Satellite—Quaternion-Based Dynamics and Control Design". W Springer Proceedings in Mathematics & Statistics, 181–96. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42402-6_16.
Pełny tekst źródłaDunlap, Kyle, Kelly Cohen i Kerianne Hobbs. "Comparing the Explainability and Performance of Reinforcement Learning and Genetic Fuzzy Systems for Safe Satellite Docking". W Explainable AI and Other Applications of Fuzzy Techniques, 116–29. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82099-2_11.
Pełny tekst źródłaSilahtar, Onur, Fatih Kutlu, Özkan Atan i Oscar Castillo. "Rendezvous and Docking Control of Satellites Using Chaos Synchronization Method with Intuitionistic Fuzzy Sliding Mode Control". W Fuzzy Logic and Neural Networks for Hybrid Intelligent System Design, 177–97. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-22042-5_10.
Pełny tekst źródłaKUNUGI, M., H. KOYAMA, T. OKANUMA, T. NAKAMURA, M. MOKUNO, I. KAWANO, H. HORIGUCHI i K. KIBE. "GUIDANCE, NAVIGATION AND CONTROL SYSTEM IN ENGINEERING TEST SATELLITE VII RENDEZ-VOUS AND DOCKING EXPERIMENT". W Automatic Control in Aerospace 1994 (Aerospace Control '94), 303–8. Elsevier, 1995. http://dx.doi.org/10.1016/b978-0-08-042238-1.50051-3.
Pełny tekst źródłaStreszczenia konferencji na temat "Satellite docking"
Wiens, Gloria J., Anake Umsrithong, Shawn Miller, Aneesh Koka i Travis Vitello. "Design of Autonomous Foldable Docking Mechanism for Small Space Vehicles". W ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-87678.
Pełny tekst źródłaRitter, Greg, Anthony Hays, Greg Wassick, Greg Sypitkowski, Carl Nardell, Pete Tchory i Jane Pavlich. "Autonomous satellite docking system". W AIAA Space 2001 Conference and Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-4527.
Pełny tekst źródłaReiter, Joel, Mason Terry, Karl F. Böhringer, John W. Suh i Gregory T. A. Kovacs. "Thermo-Bimorph Microcilia Arrays for Small Spacecraft Docking". W ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1071.
Pełny tekst źródłaErdem, Y., Aras M. Numan Uyar, Mahmut C. Soydan, M. Selahaddin Harmankaya, Furkan Alan i Burak Akbulut. "Developing and modelling of satellite docking algorithm". W 2017 8th International Conference on Recent Advances in Space Technologies (RAST). IEEE, 2017. http://dx.doi.org/10.1109/rast.2017.8002987.
Pełny tekst źródłaMa, Ou, Angel Flores-Abad i Toralf Boge. "Using Industrial Robots for Hardware-in-the-Loop Simulation of Spacecraft Rendezvous and Docking". W ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-70917.
Pełny tekst źródłaMokuno, Masaaki, Isao Kawano, Hiroshi Horiguchi i Koichi Kibe. "Engineering Test Satellite VII Rendezvous Docking optical sensor system". W Guidance, Navigation, and Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-3689.
Pełny tekst źródłaPrabhakar, Nirmit, Madhar Tiwari, Troy Henderson i Richard J. Prazenica. "Application of Direct Adaptive Control to Autonomous Satellite Docking". W AIAA Scitech 2019 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2019. http://dx.doi.org/10.2514/6.2019-1520.
Pełny tekst źródłaHays, Anthony B., Peter Tchoryk, Jr., Jane C. Pavlich, Greg A. Ritter i Gregory J. Wassick. "Advancements in design of an autonomous satellite docking system". W Defense and Security, redaktorzy Peter Tchoryk, Jr. i Melissa Wright. SPIE, 2004. http://dx.doi.org/10.1117/12.537767.
Pełny tekst źródłaHays, Anthony B., Peter Tchoryk, Jr., Jane C. Pavlich i Gregory Wassick. "Dynamic simulation and validation of a satellite docking system". W AeroSense 2003, redaktorzy Peter Tchoryk, Jr. i James Shoemaker. SPIE, 2003. http://dx.doi.org/10.1117/12.497150.
Pełny tekst źródłaDunlap, Kyle, Mark Mote, Kai Delsing i Kerianne L. Hobbs. "Run Time Assured Reinforcement Learning for Safe Satellite Docking". W AIAA SCITECH 2022 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2022. http://dx.doi.org/10.2514/6.2022-1853.
Pełny tekst źródła