Gotowa bibliografia na temat „Satellite”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Satellite”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Satellite"
Shen, Ziyu, Wenbin Shen, Xinyu Xu, Shuangxi Zhang, Tengxu Zhang, Lin He, Zhan Cai, Si Xiong i Lingxuan Wang. "A Method for Measuring Gravitational Potential of Satellite’s Orbit Using Frequency Signal Transfer Technique between Satellites". Remote Sensing 15, nr 14 (12.07.2023): 3514. http://dx.doi.org/10.3390/rs15143514.
Pełny tekst źródłaWu, Huanqin, Maocai Wang, Zhiming Song, Xiaoyu Chen, Guangming Dai, Wei Zheng i Qingrui Zhou. "Random Error Analysis of Launch and Injection Positions for Distributed Multi Micro-nano Satellite System". Journal of Physics: Conference Series 2640, nr 1 (1.11.2023): 012014. http://dx.doi.org/10.1088/1742-6596/2640/1/012014.
Pełny tekst źródłaTong, Minglei, Song Li, Xiaoxiang Wang i Peng Wei. "Inter-Satellite Cooperative Offloading Decision and Resource Allocation in Mobile Edge Computing-Enabled Satellite–Terrestrial Networks". Sensors 23, nr 2 (6.01.2023): 668. http://dx.doi.org/10.3390/s23020668.
Pełny tekst źródłaUtami, Vi Bauty Riska, Imam MPB i Shinta Romadhona. "Analysis the impact of sun outage and satellite orbit at performance of the telkom 3S satellite communication system". JURNAL INFOTEL 13, nr 3 (31.08.2021): 134–42. http://dx.doi.org/10.20895/infotel.v13i3.626.
Pełny tekst źródłaShakila Hosseinzadeh Kondori, Mustafa Helvacı. "Satellite Temperature Modeling in Geostationary Orbit Using COMSOL". Tuijin Jishu/Journal of Propulsion Technology 44, nr 5 (29.11.2023): 127–39. http://dx.doi.org/10.52783/tjjpt.v44.i5.2440.
Pełny tekst źródłaPapiya, Sumaiya Janefar, Dr Bobby Barua i Mehnaz Hossain. "Prospects Challenges of Bangabandhu Satellite-2". International Journal of Advanced Networking and Applications 14, nr 02 (2022): 5342–52. http://dx.doi.org/10.35444/ijana.2022.14204.
Pełny tekst źródłaWilliamson, M. "Satellites rock! [satellite radio]". IEE Review 49, nr 11 (1.12.2003): 34–37. http://dx.doi.org/10.1049/ir:20031104.
Pełny tekst źródłaWei, Hui, Jiancheng Li, Shoujian Zhang i Xinyu Xu. "Cycle Slip Detection and Repair for Dual-Frequency LEO Satellite GPS Carrier Phase Observations with Orbit Dynamic Model Information". Remote Sensing 11, nr 11 (29.05.2019): 1273. http://dx.doi.org/10.3390/rs11111273.
Pełny tekst źródłaWu, Shiyu, Dongkai Yang, Yunlong Zhu i Feng Wang. "Improved GNSS-Based Bistatic SAR Using Multi-Satellites Fusion: Analysis and Experimental Demonstration". Sensors 20, nr 24 (11.12.2020): 7119. http://dx.doi.org/10.3390/s20247119.
Pełny tekst źródłaYun, Seok-Teak, i Seung-Hyun Kong. "Forecasting Methods of Battery Charge and Discharge Current Profile for LEO Satellites". Electronics 10, nr 23 (1.12.2021): 2999. http://dx.doi.org/10.3390/electronics10232999.
Pełny tekst źródłaRozprawy doktorskie na temat "Satellite"
Anderson, Jason Lionel. "Autonomous Satellite Operations For CubeSat Satellites". DigitalCommons@CalPoly, 2010. https://digitalcommons.calpoly.edu/theses/256.
Pełny tekst źródłaAppleby, Graham M. "Satellite laser ranging and the ETALON Geodetic satellites". Thesis, Aston University, 1996. http://publications.aston.ac.uk/13270/.
Pełny tekst źródłaSharifi, Mohammad A. "Satellite gradiometry using a satellite pair". [S.l. : s.n.], 2004. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB11406716.
Pełny tekst źródłaScore, Robert H. "An examination of XM satellite subscriber's perceptions of satellite radio compared to traditional AM/FM radio". Instructions for remote access. Click here to access this electronic resource. Access available to Kutztown University faculty, staff, and students only, 2002. http://www.kutztown.edu/library/services/remote_access.asp.
Pełny tekst źródłaSource: Masters Abstracts International, Volume: 45-06, page: 2720. Typescript. Abstract precedes thesis as preliminary leaves 1-2. Includes bibliographical references (leaves 34-35).
Morimoto, Todd A., Thomas E. Nowitzky i Steven A. Grippando. "OPERATING A LIGHTWEIGHT, EXPENSIVE LOW EARTH ORBITING SATELLITE". International Foundation for Telemetering, 1994. http://hdl.handle.net/10150/608842.
Pełny tekst źródłaAn increasing number of satellite users and manufacturers are looking to lightweight, inexpensive satellites as substitutes to traditional large, expensive satellites with multiple payloads. Neither the Department of Defense nor the commercial sector can bear the financial or reputational consequences associated with massive program failures. With the low cost and weight of these new satellites, users can achieve mission success without great risk. One example of this new class of inexpensive spacecraft is the RADCAL (RADar CALibration) satellite. Detachment 2, Space & Missile Systems Center at Sunnyvale, CA operates the satellite. RADCAL is a 200-pound polar orbiting satellite with an average altitude of 450 miles. It is primarily used by 77 worldwide radars to calibrate their systems to within five meter accuracy. Also flying on board RADCAL is a communication payload for remote field users with small radios. The RADCAL program has satisfied all mission requirements. However, with the limited size and cost come certain challenges, both in the satellite and on the ground. Pre-launch testing was not as comprehensive as with more expensive programs; anomalies have arisen that require extensive workarounds. Data management is not a straightforward task, and it is sometimes difficult and inexact to track satellite performance. These challenges are presented with their solutions in the following discussion; this paper addresses the functional, operational, and testing aspects associated with the RADCAL satellite.
Zaheer, Muhammad. "Kinematic orbit determination of low Earth orbiting satellites, using satellite-to-satellite tracking data and comparison of results with different propagators". Thesis, KTH, Geodesi och geoinformatik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-142627.
Pełny tekst źródłaXi, Xiaojin. "Analytical representation for ephemeris with short time-span : application to the longitude of Titan". Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLEO015/document.
Pełny tekst źródłaThe numerical integration ephemeris, which are convenient to download from online service of IMCCE, or Horizons of JPL have very good precision based on recent observations. Meanwhile, another kind, the analytical ephemeris like TASS, describes in detail the dynamical system by combination representation of proper frequencies. We plan to make a connection between those two different type ephemeris, that it ’s benefited us to study the rotation of natural satellites with its high precision ephemeris, those instantaneous positions, velocity, and those system characteristics like proper frequencies. The main difficulty is to avoid the shortcoming of the limited interval of observation ephemeris.In our work, we take the combination representation of Titan with 10,000 years TASS ephemeris as an example and standard. Then, we experiment to obtain both the analytical representation of the mean longitude of Titan and the proper frequencies involved in it with 1,000 years TASS ephemeris by analysis frequency. Due to limited timespan, we extend the method with a least square method, especially for the long period terms. We verify the effectiveness and exactness of the whole method in rebuilt the combination representation.Finally and most important, we get the combination representation of Titan with 1000 years JPL ephemeris. Between the solution of JPL and the representation of TASS, there exists a 60 km difference in the amplitude of the major component, that is considered as a system difference. The limited interval ephemeris makes the influence of the proper frequency, which brings the error into the long period term like the one from the node of Titan. For nearly all other components, those amplitudes and phases are similar with the relative terms of TASS. The error of our representation is less than 100 kilometres over 1,000 years and the standard deviation is about 26 kilometres
Wolf, Robert. "Satellite orbit and ephemeris determination using inter satellite links". [S.l.] : [s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=961611820.
Pełny tekst źródłaBezuidenhout, Quintus. "Satellite communications strategy selection for optimal LEO satellite communication". Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/71930.
Pełny tekst źródłaENGLISH ABSTRACT: A low earth orbit satellite system can be useful in numerous communication applications where physical connections are not possible. Communication time available from any point on earth to the satellite is less than one hour per day. This one hour is fragmented into smaller time slots due to the satellite orbiting. This is not much time to transfer data and there is even less time available to transfer data when there are other external factors affecting the system. It is thus crucial to optimise the satellite communications link so that more data can be transferred per orbit. The goal of this thesis is to improve the performance of a low earth orbit satellite communication channel by varying certain parameters of the system, such as the protocol used, modulation scheme, packet size, transmission power etc. and then to observe how these parameters influence the system. The protocols that were chosen to be implemented are CSMA-CA, CSMA-CA with DSSS technology and Round-Robin Polling. A simulator for each protocol was designed with the Opnet platform, so that specific parameters could be changed and the results observed, in order to optimise the communications link between the satellite and ground stations. The results showed that there is no particular configuration of modulation scheme, packet size, transmission power etc. presenting the best overall solution for LEO satellite communications. It must be considered what the specific LEO satellite application would be used for and the characteristics required by that specific application. A suitable configuration must subsequently be chosen from the set of configurations available to satisfy most of the application requirements.
AFRIKAANSE OPSOMMING: ’n Satelliet met ’n lae wentelbaan kan gebruik word in verskeie kommunikasie toepassings waar fisiese verbindinge nie noodwendig moontlik is nie. Die kommunikasietyd van enige punt van aarde af na die satelliet, is minder as een uur per dag. Hierdie tyd word nog verder verklein omdat die satelliet besig is om, om die aarde te wentel. ’n Uur is glad nie baie tyd om data oor te dra nie en in realiteit is daar nog minder tyd beskikbaar as daar eksterne faktore op die sisteem inwerk. Dus is dit baie belangrik om die satelliet kommunikasiekanaal te optimiseer sodat soveel moontlik data as moontlik oorgedra kan word per omwenteling. Die doel van hierdie tesis is om die deurset van die kommunikasiekanaal van n lae wentelbaan satelliet te optimiseer, deur verskeie parameters te verander soos, protokol wat gebruik word, modulasie skema, pakkie grootte, transmissiekrag ens. en dan waar te neem hoe dit die sisteem beïnvloed. Die protokolle wat geïmplementeer is, is CSMA-CA, CSMA-CA met DSSS tegnologie en Round-Robin Polling. ’n Simulator vir elke protokol was ontwerp in die Opnet simulasie platform, sodat die spesifieke parameters verander kon word om die resultate te bestudeer met die doel om die kommunikasiekanaal tussen die satelliet en grond stasies optimaal te benut. Die resultate het bewys dat daar geen spesifieke konfigurasie van modulasie skema, pakkie grootte, transmissiekrag ens. is wat die algehele beste oplossing is nie. Die spesifieke applikasie waarvoor die lae wentelbaan satelliet gaan gebruik word moet geanaliseer word sowel as die spesifieke karakteristieke van daai applikasie. Daarvolgens moet n unieke konfigurasie opgestel word wat meeste van die applikasie se behoeftes bevredig.
Sharifi, Mohammad A. "Satellite to satellite tracking in the space-wise approach". [S.l. : s.n.], 2006. http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-28337.
Pełny tekst źródłaKsiążki na temat "Satellite"
Stefan, Kalmár, Museum für Gegenwartskunst Zürich i Consortium (Art center : Dijon, France), red. Satellite. Zürich: Museum für Gegenwartskunst, 1998.
Znajdź pełny tekst źródłaH, Vonder Haar Thomas, red. Satellite meteorology: An introduction. San Diego: Academic Press, 1995.
Znajdź pełny tekst źródłaCommitte, International Radio Consultative. Handbook: Satellite communications : fixed-satellite service. Geneva: International Telecommunication Union, 1988.
Znajdź pełny tekst źródłaInternational Radio Consultative Committee., red. Handbook, satellite communications: Fixed-satellite service. Geneva: International Telecommunication Union, 1988.
Znajdź pełny tekst źródłaSatellite geodesy. Wyd. 2. Berlin: Walter de Gruyter, 2003.
Znajdź pełny tekst źródłaCenter, Goddard Space Flight, i United States. National Environmental Satellite, Data, and Information Service., red. Mission overview, GOES: Geostationary Operational Environmental Satellite. [Greenbelt, Md.]: NASA Goddard Space Flight Center, 1997.
Znajdź pełny tekst źródłaP, Rainger, red. Satellite broadcasting. Chichester [West Sussex]: Wiley, 1985.
Znajdź pełny tekst źródłaCenter, Lewis Research, red. Communications satellite: NASA's advanced communications technology satellite. [Cleveland, Ohio]: NASA Lewis Research Center, 1997.
Znajdź pełny tekst źródłaUnion, International Telecommunication. Mobile satellite services and radiodetermination satellite service. Geneva: International Telecommunication Union, 1998.
Znajdź pełny tekst źródłaCenter, NASA Glenn Research, red. Communications satellite: NASA's advanced communications technology satellite. Cleveland, Ohio: NASA Glenn Research Center, 1999.
Znajdź pełny tekst źródłaCzęści książek na temat "Satellite"
Pelton, Joseph N. "Satellite Orbits for Communications Satellites". W Handbook of Satellite Applications, 93–114. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-7671-0_5.
Pełny tekst źródłaPelton, Joseph N. "Satellite Orbits for Communications Satellites". W Handbook of Satellite Applications, 99–120. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-23386-4_5.
Pełny tekst źródłaPelton, Joseph N. "Satellite Orbits for Communications Satellites". W Handbook of Satellite Applications, 1–22. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-6423-5_5-3.
Pełny tekst źródłaInglis, Andrew F. "Satellite Program Distribution Geosynchronous Satellites". W Behind the Tube, 392–438. London: Routledge, 2023. http://dx.doi.org/10.4324/9781003454601-8.
Pełny tekst źródłaMarjoribanks, Roger. "satellite images Satellite Imagery". W Geological Methods in Mineral Exploration and Mining, 137–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-74375-0_8.
Pełny tekst źródłaWeik, Martin H. "satellite". W Computer Science and Communications Dictionary, 1513. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_16581.
Pełny tekst źródłaMaitra, Amit, i Joseph N. Pelton. "Mobile Satellite Communications and Small Satellites". W Handbook of Small Satellites, 1–16. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20707-6_38-1.
Pełny tekst źródłaMaitra, Amit, i Joseph N. Pelton. "Mobile Satellite Communications and Small Satellites". W Handbook of Small Satellites, 721–36. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36308-6_38.
Pełny tekst źródłaIlk, Karl Heinz. "Satellite-to-Satellite-Tracking (SST)". W Satellitengeodäsie, 215–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2021. http://dx.doi.org/10.1007/978-3-662-62369-5_12.
Pełny tekst źródłaShi, Chuang, i Na Wei. "Satellite Navigation for Digital Earth". W Manual of Digital Earth, 125–60. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9915-3_4.
Pełny tekst źródłaStreszczenia konferencji na temat "Satellite"
Specht, Cezary, i Paweł Dąbrowski. "Runaway PRN11 GPS satellite". W Environmental Engineering. VGTU Technika, 2017. http://dx.doi.org/10.3846/enviro.2017.244.
Pełny tekst źródłaYun, Sang-Hyuk, Hyo-Sung Ahn, Sun-Ju Park, Ok-Chul Jung i Dae-Won Chung. "Ground Antenna Scheduling Algorithm for Multi-Satellite Tracking". W ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-48042.
Pełny tekst źródłaMcMullen, Matthew G., Tamara Alexander i Adam Huang. "Small Satellite Formations via Higher Velocity Deployment". W ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-40010.
Pełny tekst źródłaSenes, Maxime, Kristen Lagadec, Baptiste Brault i Bertrand Raffier. "A Passive Device for Postmortem Detumbling/Antitumbling of LEO Satellites, to Facilitate Active Removal". W ESA 12th International Conference on Guidance Navigation and Control and 9th International Conference on Astrodynamics Tools and Techniques. ESA, 2023. http://dx.doi.org/10.5270/esa-gnc-icatt-2023-093.
Pełny tekst źródłaPaul, Johns, Abdul Salam PM, Rajeev P, Santhosh J. Nalluveettil i Jothiramalingam A. "Development of INLS 3U Uni-Pod Nano Satellite (CubeSat) Dispenser System for 3U Class Satellites". W AeroCON 2024. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2024. http://dx.doi.org/10.4271/2024-26-0458.
Pełny tekst źródłaAdam, Steve, i Mike Farrell. "High Resolution Satellite Imagery: From Spies to Pipeline Management". W 2000 3rd International Pipeline Conference. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/ipc2000-152.
Pełny tekst źródłaMeng, Jingxiong, Yan Chen i Junfeng Zhao. "Simulator Development for Vehicle Localization Using Low Earth Orbit Satellites". W WCX SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2024. http://dx.doi.org/10.4271/2024-01-2846.
Pełny tekst źródłaKumar Maurya, Ashutosh, Uma Yadav, Mukesh Kumar i Javalkar Dinesh Kumar. "Developing and deploying a satellite communication ground station: Design and Implementation". W International Conference on Cutting-Edge Developments in Engineering Technology and Science. ICCDETS, 2024. http://dx.doi.org/10.62919/gsaa7128.
Pełny tekst źródłaMihalčinová, Nikola, i Miriam Jarošová. "Meteorological satellite as an important source of meteorological information for aviation". W Práce a štúdie. University of Žilina, 2021. http://dx.doi.org/10.26552/pas.z.2021.1.15.
Pełny tekst źródłaRonalds, Beverley F., i Elvin I. H. Heng. "Subsea and Platform Options for Satellite Field Developments". W ASME 2003 22nd International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2003. http://dx.doi.org/10.1115/omae2003-37042.
Pełny tekst źródłaRaporty organizacyjne na temat "Satellite"
Schug, Klaus. Satellite Local Area Network Inter-Satellite Link. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2000. http://dx.doi.org/10.21236/ada387200.
Pełny tekst źródłaCOLORADO UNIV AT BOULDER. Satellite Oceanography. Fort Belvoir, VA: Defense Technical Information Center, styczeń 1994. http://dx.doi.org/10.21236/ada277286.
Pełny tekst źródłaEspaña Fontán, Paula, i Maria Angeles Gomez Flechoso. Effects of the orbit orientation on the evolution of dwarf satellite galaxies. Fundación Avanza, maj 2023. http://dx.doi.org/10.60096/fundacionavanza/2492022.
Pełny tekst źródłaHansen, Elaine, Dave Beckwith, Brian Egaas, Steve Levin-Stankevich i Jennifer Michels. Three Corner Satellite. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2002. http://dx.doi.org/10.21236/ada410043.
Pełny tekst źródłaHoran, Stephen. 3 Corner Satellite. Fort Belvoir, VA: Defense Technical Information Center, listopad 2002. http://dx.doi.org/10.21236/ada410185.
Pełny tekst źródłaDanielson, D. A., C. P. Sagovac, B. Neta i L. W. Early. Semianalytic Satellite Theory. Fort Belvoir, VA: Defense Technical Information Center, styczeń 1995. http://dx.doi.org/10.21236/ada531136.
Pełny tekst źródłaSchultz, J. F., S. J. Czuchlewski i C. R. Quick. Satellite-based laser windsounder. Office of Scientific and Technical Information (OSTI), sierpień 1997. http://dx.doi.org/10.2172/549682.
Pełny tekst źródłaLiaw, D. C., i E. H. Abed. Tethered Satellite System Stability. Fort Belvoir, VA: Defense Technical Information Center, styczeń 1989. http://dx.doi.org/10.21236/ada454743.
Pełny tekst źródłaCounselman, C. C. Millimeter-Accuracy Satellite Navigation. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 1991. http://dx.doi.org/10.21236/ada237736.
Pełny tekst źródłaBernier, M. Un satellite très prometteur. Natural Resources Canada/CMSS/Information Management, 1985. http://dx.doi.org/10.4095/217302.
Pełny tekst źródła