Gotowa bibliografia na temat „SALT-METAL”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „SALT-METAL”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "SALT-METAL"
Christie, Robert M., i Jennifer L. Mackay. "Metal salt azo pigments". Coloration Technology 124, nr 3 (czerwiec 2008): 133–44. http://dx.doi.org/10.1111/j.1478-4408.2008.00133.x.
Pełny tekst źródłaSilvestrelli, Pier Luigi, Ali Alavi, Michele Parrinello i Daan Frenkel. "Nonmetal-metal transition in metal–molten-salt solutions". Physical Review B 53, nr 19 (15.05.1996): 12750–60. http://dx.doi.org/10.1103/physrevb.53.12750.
Pełny tekst źródłaJUSSIPBEKOV, U. Zh, R. M. CHERNYAKOVA, A. A. АGATAYEVA, N. N. KOZHABEKOVA, R. А. KAIYNBAYEVA i G. Sh SULTANBAYEVA. "SORPTION OF HEAVY METAL CATIONS FROM A WATER-SALT SYSTEMBY NATURAL MONTMORILLONITE". Chemical Journal of Kazakhstan 73, nr 1 (14.03.2021): 204–12. http://dx.doi.org/10.51580/2021-1/2710-1185.22.
Pełny tekst źródłaLi, Yongjiang, Xiaoyan Ma, Jingyu Ma, Zongwu Zhang, Zhaoqi Niu i Fang Chen. "Fabrication of Pore-Selective Metal-Nanoparticle-Functionalized Honeycomb Films via the Breath Figure Accompanied by In Situ Reduction". Polymers 13, nr 3 (20.01.2021): 316. http://dx.doi.org/10.3390/polym13030316.
Pełny tekst źródłaFlint, Edward B., i Kenneth S. Suslick. "Sonoluminescence from alkali-metal salt solutions". Journal of Physical Chemistry 95, nr 3 (luty 1991): 1484–88. http://dx.doi.org/10.1021/j100156a084.
Pełny tekst źródłaWeber, Mirco, David Vorobev i Wolfgang Viöl. "Microwave Plasma-Enhanced Parylene–Metal Multilayer Design from Metal Salts". Nanomaterials 12, nr 15 (24.07.2022): 2540. http://dx.doi.org/10.3390/nano12152540.
Pełny tekst źródłaSun, Dezhi, Wenqing Zheng, Xiukui Qu i Ling Li. "Enthalpies of Dilution formyo-Inositol in Aqueous Alkali Metal Salt and Alkaline Earth Metal Salt Solutions". Journal of Chemical & Engineering Data 52, nr 3 (maj 2007): 898–901. http://dx.doi.org/10.1021/je060492g.
Pełny tekst źródłaMeyerhoffer, Steven M., i Linda B. McGown. "Fluorescent probe studies of metal salt effects on bile salt aggregation". Journal of the American Chemical Society 113, nr 6 (marzec 1991): 2146–49. http://dx.doi.org/10.1021/ja00006a036.
Pełny tekst źródłaSaito, Hiroki, i Shinji Koyama. "Solid-State Bonding of 5052 Aluminum Alloy/316L Stainless Steel by Using Organic Salt Formation/Decomposition Reaction". Materials Science Forum 879 (listopad 2016): 2468–72. http://dx.doi.org/10.4028/www.scientific.net/msf.879.2468.
Pełny tekst źródłaKim, Hyunjin, Ji Eun Song, Carla Silva i Hye Rim Kim. "Production of conductive bacterial cellulose-polyaniline membranes in the presence of metal salts". Textile Research Journal 90, nr 13-14 (16.12.2019): 1517–26. http://dx.doi.org/10.1177/0040517519893717.
Pełny tekst źródłaRozprawy doktorskie na temat "SALT-METAL"
Brooker, Alan Thomas. "New routes to metal salt complexes". Thesis, University of Cambridge, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.359761.
Pełny tekst źródłaEmmerson, Richard Hugh Christian. "Salt marsh restoration by managed retreat : metal and nutrient fluxes". Thesis, Imperial College London, 1997. http://hdl.handle.net/10044/1/8454.
Pełny tekst źródłaLacombe, Marie. "Synthesis and metal salt binding properties of functionalised macrocyclic ligands". Thesis, University of Nottingham, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.275160.
Pełny tekst źródłaKhandelwal, Amit Harikant. "Lithium, sodium and lanthanide metal inorganic and organic salt complexes". Thesis, University of Cambridge, 1994. https://www.repository.cam.ac.uk/handle/1810/272664.
Pełny tekst źródłaAlkhamis, Mohammad, i Mohammad Alkhamis. "Stability of Metal in Molten Chloride Salt at 800˚C". Thesis, The University of Arizona, 2016. http://hdl.handle.net/10150/622893.
Pełny tekst źródłaFatollahi-Fard, Farzin. "Production of Titanium Metal by an Electrochemical Molten Salt Process". Research Showcase @ CMU, 2017. http://repository.cmu.edu/dissertations/893.
Pełny tekst źródłaSaeed-Akbari, Semiramis [Verfasser]. "Minimizing Salt and Metal Losses in Mg-Recycling through Salt Optimization and Black Dross Distillation / Semiramis Saeed-Akbari". Aachen : Shaker, 2011. http://d-nb.info/1071529412/34.
Pełny tekst źródłaMeyer, Joseph Freeman. "Recovery boiler superheater corrosion - solubility of metal oxides in molten salt". Thesis, Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47742.
Pełny tekst źródłaTomlinson, Simon Michael. "Computer simulation studies of rock-salt structured binary transition metal oxides". Thesis, University College London (University of London), 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.264941.
Pełny tekst źródłaSpatocco, Brian Leonard. "Investigation of molten salt electrolytes for low-temperature liquid metal batteries". Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/101461.
Pełny tekst źródłaThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 202-211).
This thesis proposes to advance our ability to solve the challenge of grid-scale storage by better positioning the liquid metal battery (LMB) to deliver energy at low levelized costs. It will do this by rigorously developing an understanding of the cost structure for LMBs via a process-based cost model, identifying key cost levers to serve as filters for system down-selection, and executing a targeted experimental program with the goal of both advancing the field as well as improving the LMB's final cost metric. Specifically, cost modelling results show that temperature is a key variable in LMB system cost as it has a multiplicative impact upon the final $/kWh cost metric of the device. Lower temperatures can reduce the total cost via simultaneous simplifications in device sealing, packaging, and wiring. In spite of this promise, the principal challenge in reducing LMB operating temperatures (>400°C) lies in identifying high conductivity, low-temperature electrolytes that are thermally, chemically, and electrochemically stable with pure molten metals. For this reason, a research program investigating a promising low-temperature binary molten salt system, NaOH-NaI, is undertaken. Thermodynamic studies confirm a low eutectic melting temperature (219°C) and, together with the identification of two new binary compounds via x-ray diffraction, it is now possible to construct a complete phase diagram. These phase equilibrium data have then been used to optimize Gibbs free energy functions for the intermediate compounds and a two-sublattice sub-regular solution framework to create a thermodynamically self-consistent model of the full binary phase space. Further, a detailed electrochemical study has identified the electrochemical window (>2.4 V) and related redox reactions and found greatly improved stability of the pure sodium electrode against the electrolyte. Results from electrochemical studies have been compared to predictions from the solution model and strong agreement supports the physicality of the model. Finally, a Na[/]NaOH-NaI[/]Pb-Bi proof-of-concept cell has achieved over 100 cycles and displayed leakage currents below 0.40 mA/cm℗ø. These results highlight an exciting new class of low-melting molten salt electrolytes and point to a future Na-based low-temperature system that could achieve costs that are 10-15% less than those of existing lithium-based LMBs.
by Brian Leonard Spatocco.
Ph. D.
Książki na temat "SALT-METAL"
Saeed-Akbari, Semiramis. Minimizing salt and metal losses in Mg-recycling through salt optimization and black dross distillation. Aachen: Shaker, 2011.
Znajdź pełny tekst źródłaMurphy, J. E. Production of lead metal by molten-salt electrolysis with energy-efficient electrodes. Washington, DC: Bureau of Mines, U.S. Dept. of the Interior, 1990.
Znajdź pełny tekst źródłaMurphy, J. E. Production of lead metal by molten-salt electrolysis with energy-efficient electrodes. Washington, DC: Bureau of Mines, U.S. Dept. of the Interior, 1990.
Znajdź pełny tekst źródłaInternational, ASM, red. Guide to pickling and descaling, and molten salt bath cleaning. Materials Park, OH: ASM International, 1996.
Znajdź pełny tekst źródłaKunetz, James Michael. The chemical behavior of heavy metal salt solutions within porous sol-gel silica. 1995.
Znajdź pełny tekst źródłaPhillips, Barbara M. Marine Bioassay Project: 10th Report: Metal, Ammonia, Sediment And Artificial Salt Toxicity Evaluations On Marine Test Organisms. Diane Pub Co, 2000.
Znajdź pełny tekst źródłaGuidance on Selecting a Strategy for Assessing the Ecological risk of Organometallic and Organic Metal Salt Substances based on their Environmental Fate. OECD, 2017. http://dx.doi.org/10.1787/9789264274785-en.
Pełny tekst źródłaHinton, David A. The Medieval Workshop. Redaktorzy Christopher Gerrard i Alejandra Gutiérrez. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198744719.013.21.
Pełny tekst źródłaChallenges Related to the Use of Liquid Metal and Molten Salt Coolants in Advanced Reactors: Report of the Collaborative Project COOL of the International Project on Innovative Nuclear Reactors and Fuel Cycles. International Atomic Energy Agency, 2013.
Znajdź pełny tekst źródłaCzęści książek na temat "SALT-METAL"
Warren, W. W. "Metal-Metal Salt Solutions". W Molten Salt Chemistry, 237–57. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3863-2_11.
Pełny tekst źródłaZingaro, R. A. "Using Metal Salt Derivatives". W Inorganic Reactions and Methods, 132. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145197.ch102.
Pełny tekst źródłaBonaplata, E., C. D. Smith i J. E. McGrath. "Metal Salt—Polymer Composites". W ACS Symposium Series, 227–37. Washington, DC: American Chemical Society, 1995. http://dx.doi.org/10.1021/bk-1995-0603.ch015.
Pełny tekst źródłaBothe, Hermann, Marjana Regvar i Katarzyna Turnau. "Arbuscular Mycorrhiza, Heavy Metal,and Salt Tolerance". W Soil Biology, 87–111. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02436-8_5.
Pełny tekst źródłaPurakayastha, T. J., Asit Mandal i Savita Kumari. "Phytoremediation of Metal- and Salt-Affected Soils". W Bioremediation of Salt Affected Soils: An Indian Perspective, 211–31. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-48257-6_11.
Pełny tekst źródłaWarren, William W. "Electronic Properties of Metal/Molten Salt Solutions". W Molten Salts: From Fundamentals to Applications, 23–46. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0458-9_2.
Pełny tekst źródłaTaxil, Pierre. "Refractory Metal Production by Molten Salt Electrolysis". W Encyclopedia of Applied Electrochemistry, 1801–6. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4419-6996-5_456.
Pełny tekst źródłaBoyce, G., J. R. Fryer i C. J. Gilmore. "Electron Crystallography of a Metal Azo Salt Pigment". W Electron Crystallography, 367–70. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8971-0_33.
Pełny tekst źródłaLiu, Qing-Song, Wen-Qiang Lu i Guan-Wu Wang. "Transition Metal Salt-Catalyzed Reactions of [60]Fullerene". W Handbook of Fullerene Science and Technology, 503–39. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8994-9_35.
Pełny tekst źródłaFreyland, W. "Metal-Molten Salt Interfaces: Wetting Transitions and Electrocrystallization". W Molten Salts: From Fundamentals to Applications, 149–77. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0458-9_5.
Pełny tekst źródłaStreszczenia konferencji na temat "SALT-METAL"
SATO, NOBUYUKI, YOSIHIKO OGANE, SHUICH SUGITA, MASAMI SHOYA, TERUO HIGA i NAOMITU TUYUKI. "REDUCTION OF SALT AND HEAVY METAL USING MICROORGANISMS". W Proceedings of the 4th International Conference. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702623_0164.
Pełny tekst źródłaSuzumura, Y., i T. Ogawa. "Metal-insulator transition in organic conductor DCNQI-Cu salt". W International Conference on Science and Technology of Synthetic Metals. IEEE, 1994. http://dx.doi.org/10.1109/stsm.1994.835545.
Pełny tekst źródłaCassidy, Galen Patrick, i Donald C. Barber. "MONITORING TOXIC HEAVY METAL CONCENTRATIONS OF MASSACHUSETTS SALT MARSH SEDIMENTS". W Joint 69th Annual Southeastern / 55th Annual Northeastern GSA Section Meeting - 2020. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020se-343927.
Pełny tekst źródłaKumar, K. Siva, B. Kavitha, K. Prabakar, D. Srinivasu, Ch Srinivas i N. Narsimlu. "Synthesis and characterization of metal oxide-polyaniline emeraldine salt based nanocomposite". W SOLID STATE PHYSICS: PROCEEDINGS OF THE 57TH DAE SOLID STATE PHYSICS SYMPOSIUM 2012. AIP, 2013. http://dx.doi.org/10.1063/1.4790963.
Pełny tekst źródłaWu, Zhaohui, Jingfu Bao, Yi Zhang, Yinglan Chen i Xiaosheng Zhang. "Droplet Rapid-Analasis Method of Metal-Salt Solution Based on Triboelectric Effect". W 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII). IEEE, 2019. http://dx.doi.org/10.1109/transducers.2019.8808301.
Pełny tekst źródłaZou, Zhi, Liqun Ma, Lei Qiao, Xiaochuan Gan i Qiuqin Fan. "Feature recognition of metal salt spray corrosion based on color spaces statistics analysis". W Applications of Digital Image Processing XL, redaktor Andrew G. Tescher. SPIE, 2017. http://dx.doi.org/10.1117/12.2273851.
Pełny tekst źródłaWallraff, Gregory M., Hoa D. Truong, Martha I. Sanchez, Noel Arellano, Alexander M. Friz, Wyatt Thornley, Oleg Kostko, Dan S. Slaughter i D. Frank Ogletree. "Model studies on the metal salt sensitization of chemically amplified photoresists (Conference Presentation)". W Advances in Patterning Materials and Processes XXXVI, redaktorzy Roel Gronheid i Daniel P. Sanders. SPIE, 2019. http://dx.doi.org/10.1117/12.2514610.
Pełny tekst źródłaSaari, Riza, Ryosuke Tsuyuguchi i Masayuki Yamaguchi. "Effect of metal salt incorporation on structure and properties for poly(vinyl alcohol)". W NOVEL TRENDS IN RHEOLOGY VIII. Author(s), 2019. http://dx.doi.org/10.1063/1.5109507.
Pełny tekst źródłaAbramov, A. V., V. V. Karpov, A. Yu Zhilyakov, S. V. Belikov, V. A. Volkovich, I. B. Polovov i O. I. Rebrin. "Corrosion resistance of nickel-based alloys in salt and metal melts containing REE". W 3RD ELECTRONIC AND GREEN MATERIALS INTERNATIONAL CONFERENCE 2017 (EGM 2017). Author(s), 2017. http://dx.doi.org/10.1063/1.5002926.
Pełny tekst źródłaPraveena, S. D., V. Ravindrachary, Ismayil, R. F. Bhajantri, A. Harisha, B. Guruswamy, Shreedatta Hegde i Rohan N. Sagar. "Inhibition and quenching effect on positronium formation in metal salt doped polymer blend". W DAE SOLID STATE PHYSICS SYMPOSIUM 2017. Author(s), 2018. http://dx.doi.org/10.1063/1.5028838.
Pełny tekst źródłaRaporty organizacyjne na temat "SALT-METAL"
Sahai, Yogeshwar. Molten Metal Treatment by Salt Fluxing with Low Environmental Emissions. Office of Scientific and Technical Information (OSTI), lipiec 2007. http://dx.doi.org/10.2172/912766.
Pełny tekst źródłaWILLIAM, WILMARTH. Reactivity of Crystalline Silicotitanate (CST) and Hazardous Metal/Actinide Loading During Low Curie Salt Use. Office of Scientific and Technical Information (OSTI), listopad 2004. http://dx.doi.org/10.2172/837909.
Pełny tekst źródłaDermatas, D. Stabilization and reuse of heavy metal contaminated soils by means of quicklime sulfate salt treatment. Final report, September 1992--February 1995. Office of Scientific and Technical Information (OSTI), sierpień 1995. http://dx.doi.org/10.2172/201739.
Pełny tekst źródłaPetrovic, Bojan, i Ivan Maldonado. Fuel and Core Design Options to Overcome the Heavy Metal Loading Limit and Improve Performance and Safety of Liquid Salt Cooled Reactors. Office of Scientific and Technical Information (OSTI), kwiecień 2016. http://dx.doi.org/10.2172/1253940.
Pełny tekst źródłaS. Frank. I-NERI ANNUAL TECHNICAL PROGRESS REPORT: 2006-002-K, Separation of Fission Products from Molten LiCl-KCl Salt Used for Electrorefining of Metal Fuels. Office of Scientific and Technical Information (OSTI), wrzesień 2009. http://dx.doi.org/10.2172/971358.
Pełny tekst źródła