Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Sachdev-Ye-Kitaev.

Artykuły w czasopismach na temat „Sachdev-Ye-Kitaev”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Sachdev-Ye-Kitaev”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Liu, Yizhuang, Maciej A. Nowak i Ismail Zahed. "Disorder in the Sachdev–Ye–Kitaev model". Physics Letters B 773 (październik 2017): 647–53. http://dx.doi.org/10.1016/j.physletb.2017.08.054.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Bagrets, Dmitry, Alexander Altland i Alex Kamenev. "Sachdev–Ye–Kitaev model as Liouville quantum mechanics". Nuclear Physics B 911 (październik 2016): 191–205. http://dx.doi.org/10.1016/j.nuclphysb.2016.08.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Cao, Ye, Yi-Neng Zhou, Ting-Ting Shi i Wei Zhang. "Towards quantum simulation of Sachdev-Ye-Kitaev model". Science Bulletin 65, nr 14 (lipiec 2020): 1170–76. http://dx.doi.org/10.1016/j.scib.2020.03.037.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Polchinski, Joseph, i Vladimir Rosenhaus. "The spectrum in the Sachdev-Ye-Kitaev model". Journal of High Energy Physics 2016, nr 4 (kwiecień 2016): 1–25. http://dx.doi.org/10.1007/jhep04(2016)001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Khramtsov, M. A. "Spontaneous Symmetry Breaking in the Sachdev–Ye–Kitaev Model". Physics of Particles and Nuclei 51, nr 4 (lipiec 2020): 557–61. http://dx.doi.org/10.1134/s1063779620040401.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Bandyopadhyay, Soumik, Philipp Uhrich, Alessio Paviglianiti i Philipp Hauke. "Universal equilibration dynamics of the Sachdev-Ye-Kitaev model". Quantum 7 (24.05.2023): 1022. http://dx.doi.org/10.22331/q-2023-05-24-1022.

Pełny tekst źródła
Streszczenie:
Equilibrium quantum many-body systems in the vicinity of phase transitions generically manifest universality. In contrast, limited knowledge has been gained on possible universal characteristics in the non-equilibrium evolution of systems in quantum critical phases. In this context, universality is generically attributed to the insensitivity of observables to the microscopic system parameters and initial conditions. Here, we present such a universal feature in the equilibration dynamics of the Sachdev-Ye-Kitaev (SYK) Hamiltonian – a paradigmatic system of disordered, all-to-all interacting fermions that has been designed as a phenomenological description of quantum critical regions. We drive the system far away from equilibrium by performing a global quench, and track how its ensemble average relaxes to a steady state. Employing state-of-the-art numerical simulations for the exact evolution, we reveal that the disorder-averaged evolution of few-body observables, including the quantum Fisher information and low-order moments of local operators, exhibit within numerical resolution a universal equilibration process. Under a straightforward rescaling, data that correspond to different initial states collapse onto a universal curve, which can be well approximated by a Gaussian throughout large parts of the evolution. To reveal the physics behind this process, we formulate a general theoretical framework based on the Novikov–Furutsu theorem. This framework extracts the disorder-averaged dynamics of a many-body system as an effective dissipative evolution, and can have applications beyond this work. The exact non-Markovian evolution of the SYK ensemble is very well captured by Bourret–Markov approximations, which contrary to common lore become justified thanks to the extreme chaoticity of the system, and universality is revealed in a spectral analysis of the corresponding Liouvillian.
Style APA, Harvard, Vancouver, ISO itp.
7

Rashkov, Radoslav. "Integrable structures in low-dimensional holography and cosmologies". International Journal of Modern Physics A 33, nr 34 (10.12.2018): 1845008. http://dx.doi.org/10.1142/s0217751x18450082.

Pełny tekst źródła
Streszczenie:
We focus on the integrable properties in low-dimensional holography. The motivation is that most of the integrable structures underlying holographic duality survive weak-strong coupling transition. We found relation between certain integrable structures in low-dimensional holography and key characteristics of the theories. We propose generalizations to higher spin (HS) theories including Sachdev–Ye–Kitaev (SYK) model. We comment on some of the intriguing relations found in this study.
Style APA, Harvard, Vancouver, ISO itp.
8

Nishinaka, Takahiro, i Seiji Terashima. "A note on Sachdev–Ye–Kitaev like model without random coupling". Nuclear Physics B 926 (styczeń 2018): 321–34. http://dx.doi.org/10.1016/j.nuclphysb.2017.11.012.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Fusy, É., L. Lionni i A. Tanasa. "Combinatorial study of graphs arising from the Sachdev–Ye–Kitaev model". European Journal of Combinatorics 86 (maj 2020): 103066. http://dx.doi.org/10.1016/j.ejc.2019.103066.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Zhang, Pengfei, i Hui Zhai. "Topological Sachdev-Ye-Kitaev model". Physical Review B 97, nr 20 (22.05.2018). http://dx.doi.org/10.1103/physrevb.97.201112.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Fu, Wenbo, Davide Gaiotto, Juan Maldacena i Subir Sachdev. "Supersymmetric Sachdev-Ye-Kitaev models". Physical Review D 95, nr 2 (13.01.2017). http://dx.doi.org/10.1103/physrevd.95.026009.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Kim, Jaewon, Xiangyu Cao i Ehud Altman. "Low-rank Sachdev-Ye-Kitaev models". Physical Review B 101, nr 12 (16.03.2020). http://dx.doi.org/10.1103/physrevb.101.125112.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Kuhlenkamp, Clemens, i Michael Knap. "Periodically Driven Sachdev-Ye-Kitaev Models". Physical Review Letters 124, nr 10 (12.03.2020). http://dx.doi.org/10.1103/physrevlett.124.106401.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Gross, David J., i Vladimir Rosenhaus. "A generalization of Sachdev-Ye-Kitaev". Journal of High Energy Physics 2017, nr 2 (luty 2017). http://dx.doi.org/10.1007/jhep02(2017)093.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Maldacena, Juan, i Douglas Stanford. "Remarks on the Sachdev-Ye-Kitaev model". Physical Review D 94, nr 10 (4.11.2016). http://dx.doi.org/10.1103/physrevd.94.106002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

García-García, Antonio M., i Victor Godet. "Euclidean wormhole in the Sachdev-Ye-Kitaev model". Physical Review D 103, nr 4 (19.02.2021). http://dx.doi.org/10.1103/physrevd.103.046014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Liu, Chunxiao, Pengfei Zhang i Xiao Chen. "Non-unitary dynamics of Sachdev-Ye-Kitaev chain". SciPost Physics 10, nr 2 (23.02.2021). http://dx.doi.org/10.21468/scipostphys.10.2.048.

Pełny tekst źródła
Streszczenie:
We construct a series of one-dimensional non-unitary dynamics consisting of both unitary and imaginary evolutions based on the Sachdev-Ye-Kitaev model. Starting from a short-range entangled state, we analyze the entanglement dynamics using the path integral formalism in the large N limit. Among all the results that we obtain, two of them are particularly interesting: (1) By varying the strength of the imaginary evolution, the interacting model exhibits a first order phase transition from the highly entangled volume law phase to an area law phase; (2) The one-dimensional free fermion model displays an extensive critical regime with emergent two-dimensional conformal symmetry.
Style APA, Harvard, Vancouver, ISO itp.
18

Zhang, Pengfei. "More on complex Sachdev-Ye-Kitaev eternal wormholes". Journal of High Energy Physics 2021, nr 3 (marzec 2021). http://dx.doi.org/10.1007/jhep03(2021)087.

Pełny tekst źródła
Streszczenie:
Abstract In this work, we study a generalization of the coupled Sachdev-Ye-Kitaev (SYK) model with U(1) charge conservations. The model contains two copies of the complex SYK model at different chemical potentials, coupled by a direct hopping term. In the zero-temperature and small coupling limit with small averaged chemical potential, the ground state is an eternal wormhole connecting two sides, with a specific charge Q = 0, which is equivalent to a thermofield double state. We derive the conformal Green’s functions and determine corresponding IR parameters. At higher chemical potential, the system transit into the black hole phase. We further derive the Schwarzian effective action and study its quench dynamics. Finally, we compare numerical results with the analytical predictions.
Style APA, Harvard, Vancouver, ISO itp.
19

Haldar, Arijit, Omid Tavakol i Thomas Scaffidi. "Variational wave functions for Sachdev-Ye-Kitaev models". Physical Review Research 3, nr 2 (7.04.2021). http://dx.doi.org/10.1103/physrevresearch.3.023020.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Kulkarni, Anish, Tokiro Numasawa i Shinsei Ryu. "Lindbladian dynamics of the Sachdev-Ye-Kitaev model". Physical Review B 106, nr 7 (22.08.2022). http://dx.doi.org/10.1103/physrevb.106.075138.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Liu, Chunxiao, Xiao Chen i Leon Balents. "Quantum entanglement of the Sachdev-Ye-Kitaev models". Physical Review B 97, nr 24 (15.06.2018). http://dx.doi.org/10.1103/physrevb.97.245126.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Eberlein, Andreas, Valentin Kasper, Subir Sachdev i Julia Steinberg. "Quantum quench of the Sachdev-Ye-Kitaev model". Physical Review B 96, nr 20 (14.11.2017). http://dx.doi.org/10.1103/physrevb.96.205123.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Zhang, Pengfei. "Evaporation dynamics of the Sachdev-Ye-Kitaev model". Physical Review B 100, nr 24 (3.12.2019). http://dx.doi.org/10.1103/physrevb.100.245104.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Huang, Yichen, i Yingfei Gu. "Eigenstate entanglement in the Sachdev-Ye-Kitaev model". Physical Review D 100, nr 4 (2.08.2019). http://dx.doi.org/10.1103/physrevd.100.041901.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Altland, Alexander, Dmitry Bagrets i Alex Kamenev. "Quantum Criticality of Granular Sachdev-Ye-Kitaev Matter". Physical Review Letters 123, nr 10 (4.09.2019). http://dx.doi.org/10.1103/physrevlett.123.106601.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Behrends, Jan, i Benjamin Béri. "Supersymmetry in the Standard Sachdev-Ye-Kitaev Model". Physical Review Letters 124, nr 23 (12.06.2020). http://dx.doi.org/10.1103/physrevlett.124.236804.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Sonner, Julian, i Manuel Vielma. "Eigenstate thermalization in the Sachdev-Ye-Kitaev model". Journal of High Energy Physics 2017, nr 11 (listopad 2017). http://dx.doi.org/10.1007/jhep11(2017)149.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Gu, Yingfei, Alexei Kitaev, Subir Sachdev i Grigory Tarnopolsky. "Notes on the complex Sachdev-Ye-Kitaev model". Journal of High Energy Physics 2020, nr 2 (luty 2020). http://dx.doi.org/10.1007/jhep02(2020)157.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Jia, Yiyang, i Jacobus J. M. Verbaarschot. "Spectral fluctuations in the Sachdev-Ye-Kitaev model". Journal of High Energy Physics 2020, nr 7 (lipiec 2020). http://dx.doi.org/10.1007/jhep07(2020)193.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Fremling, Mikael, i Lars Fritz. "Sachdev-Ye-Kitaev type physics in the strained Kitaev honeycomb model". Physical Review B 105, nr 8 (25.02.2022). http://dx.doi.org/10.1103/physrevb.105.085147.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Su, Kaixiang, Pengfei Zhang i Hui Zhai. "Page curve from non-Markovianity". Journal of High Energy Physics 2021, nr 6 (czerwiec 2021). http://dx.doi.org/10.1007/jhep06(2021)156.

Pełny tekst źródła
Streszczenie:
Abstract In this paper, we use the exactly solvable Sachdev-Ye-Kitaev model to address the issue of entropy dynamics when an interacting quantum system is coupled to a non-Markovian environment. We find that at the initial stage, the entropy always increases linearly matching the Markovian result. When the system thermalizes with the environment at a sufficiently long time, if the environment temperature is low and the coupling between system and environment is weak, then the total thermal entropy is low and the entanglement between system and environment is also weak, which yields a small system entropy in the long-time steady state. This manifestation of non-Markovian effects of the environment forces the entropy to decrease in the later stage, which yields the Page curve for the entropy dynamics. We argue that this physical scenario revealed by the exact solution of the Sachdev-Ye-Kitaev model is universally applicable for general chaotic quantum many-body systems and can be verified experimentally in near future.
Style APA, Harvard, Vancouver, ISO itp.
32

Chen, Xiao, Yingfei Gu i Andrew Lucas. "Many-body quantum dynamics slows down at low density". SciPost Physics 9, nr 5 (12.11.2020). http://dx.doi.org/10.21468/scipostphys.9.5.071.

Pełny tekst źródła
Streszczenie:
We study quantum many-body systems with a global U(1) conservation law, focusing on a theory of N interacting fermions with charge conservation, or N interacting spins with one conserved component of total spin. We define an effective operator size at finite chemical potential through suitably regularized out-of-time-ordered correlation functions. The growth rate of this density-dependent operator size vanishes algebraically with charge density; hence we obtain new bounds on Lyapunov exponents and butterfly velocities in charged systems at a given density, which are parametrically stronger than any Lieb-Robinson bound. We argue that the density dependence of our bound on the Lyapunov exponent is saturated in the charged Sachdev-Ye-Kitaev model. We also study random automaton quantum circuits and Brownian Sachdev-Ye-Kitaev models, each of which exhibit a different density dependence for the Lyapunov exponent, and explain the discrepancy. We propose that our results are a cartoon for understanding Planckian-limited energy-conserving dynamics at finite temperature.
Style APA, Harvard, Vancouver, ISO itp.
33

Wei, Chenan, i Tigran A. Sedrakyan. "Optical lattice platform for the Sachdev-Ye-Kitaev model". Physical Review A 103, nr 1 (29.01.2021). http://dx.doi.org/10.1103/physreva.103.013323.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Kobrin, Bryce, Zhenbin Yang, Gregory D. Kahanamoku-Meyer, Christopher T. Olund, Joel E. Moore, Douglas Stanford i Norman Y. Yao. "Many-Body Chaos in the Sachdev-Ye-Kitaev Model". Physical Review Letters 126, nr 3 (20.01.2021). http://dx.doi.org/10.1103/physrevlett.126.030602.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Lantagne-Hurtubise, Étienne, Vedangi Pathak, Sharmistha Sahoo i Marcel Franz. "Superconducting instabilities in a spinful Sachdev-Ye-Kitaev model". Physical Review B 104, nr 2 (23.07.2021). http://dx.doi.org/10.1103/physrevb.104.l020509.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Aleksey, Lunkin, i Mikhail Feigel'man. "Non-equilibrium Sachdev-Ye-Kitaev model with quadratic perturbation". SciPost Physics 12, nr 1 (20.01.2022). http://dx.doi.org/10.21468/scipostphys.12.1.031.

Pełny tekst źródła
Streszczenie:
We consider a non-equilibrium generalization of the mixed SYK_44+SYK_22 model and calculate the energy dissipation rate W(\omega)W(ω) that results due to periodic modulation of random quadratic matrix elements with a frequency \omegaω. We find that W(\omega)W(ω) possesses a peak at \omegaω close to the polaron energy spliting \omega_RωR found recently in [1], demonstrating physical significance of this energy scale. Next, we study the effect of energy pumping with a finite amplitude at the resonance frequency \omega_RωR and calculate, in presence of this pumping, non-equilibrium dissipation rate due to low-frequency parameteric modulation. We found unusual phenomenon similar to “dry friction” in presence of pumping.
Style APA, Harvard, Vancouver, ISO itp.
37

Tarnopolsky, Grigory. "Large q expansion in the Sachdev-Ye-Kitaev model". Physical Review D 99, nr 2 (15.01.2019). http://dx.doi.org/10.1103/physrevd.99.026010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Chew, Aaron, Andrew Essin i Jason Alicea. "Approximating the Sachdev-Ye-Kitaev model with Majorana wires". Physical Review B 96, nr 12 (29.09.2017). http://dx.doi.org/10.1103/physrevb.96.121119.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Winer, Michael, Shao-Kai Jian i Brian Swingle. "Exponential Ramp in the Quadratic Sachdev-Ye-Kitaev Model". Physical Review Letters 125, nr 25 (18.12.2020). http://dx.doi.org/10.1103/physrevlett.125.250602.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Guo, Haoyu, Yingfei Gu i Subir Sachdev. "Transport and chaos in lattice Sachdev-Ye-Kitaev models". Physical Review B 100, nr 4 (26.07.2019). http://dx.doi.org/10.1103/physrevb.100.045140.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Song, Xue-Yang, Chao-Ming Jian i Leon Balents. "Strongly Correlated Metal Built from Sachdev-Ye-Kitaev Models". Physical Review Letters 119, nr 21 (20.11.2017). http://dx.doi.org/10.1103/physrevlett.119.216601.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

García-García, Antonio M., Bruno Loureiro, Aurelio Romero-Bermúdez i Masaki Tezuka. "Chaotic-Integrable Transition in the Sachdev-Ye-Kitaev Model". Physical Review Letters 120, nr 24 (15.06.2018). http://dx.doi.org/10.1103/physrevlett.120.241603.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Schmitt, Markus, Dries Sels, Stefan Kehrein i Anatoli Polkovnikov. "Semiclassical echo dynamics in the Sachdev-Ye-Kitaev model". Physical Review B 99, nr 13 (8.04.2019). http://dx.doi.org/10.1103/physrevb.99.134301.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Micklitz, T., Felipe Monteiro i Alexander Altland. "Nonergodic Extended States in the Sachdev-Ye-Kitaev Model". Physical Review Letters 123, nr 12 (18.09.2019). http://dx.doi.org/10.1103/physrevlett.123.125701.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Gu, Yingfei, Andrew Lucas i Xiao-Liang Qi. "Spread of entanglement in a Sachdev-Ye-Kitaev chain". Journal of High Energy Physics 2017, nr 9 (wrzesień 2017). http://dx.doi.org/10.1007/jhep09(2017)120.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Wang, Hanteng, D. Bagrets, A. L. Chudnovskiy i A. Kamenev. "On the replica structure of Sachdev-Ye-Kitaev model". Journal of High Energy Physics 2019, nr 9 (wrzesień 2019). http://dx.doi.org/10.1007/jhep09(2019)057.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Heydeman, M., G. J. Turiaci i W. Zhao. "Phases of $$ \mathcal{N} $$ = 2 Sachdev-Ye-Kitaev models". Journal of High Energy Physics 2023, nr 1 (18.01.2023). http://dx.doi.org/10.1007/jhep01(2023)098.

Pełny tekst źródła
Streszczenie:
Abstract We study $$ \mathcal{N} $$ N = 2 supersymmetric Sachdev-Ye-Kitaev (SYK) models with com- plex fermions at non-zero background charge. Motivated by multi-charge supersymmetric black holes, we propose a new $$ \mathcal{N} $$ N = 2 SYK model with multiple U(1) symmetries, integer charges, and a non-vanishing supersymmetric index, realizing features not present in known SYK models. In both models, a conformal solution with a super-Schwarzian mode emerges at low temperatures, signalling the appearance of nearly AdS2/BPS physics. However, in contrast to complex SYK, the fermion scaling dimension depends on the background charge in the conformal limit. For a critical charge, we find a high to low entropy phase transition in which the conformal solution ceases to be valid. This transition has a simple interpretation– the fermion scaling dimension violates the unitarity bound. We offer some comments on a holographic interpretation for supersymmetric black holes.
Style APA, Harvard, Vancouver, ISO itp.
48

Kawabata, Kohei, Anish Kulkarni, Jiachen Li, Tokiro Numasawa i Shinsei Ryu. "Dynamical quantum phase transitions in Sachdev-Ye-Kitaev Lindbladians". Physical Review B 108, nr 7 (3.08.2023). http://dx.doi.org/10.1103/physrevb.108.075110.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Nojiri, Shin ichi, i Sergei D. Odintsov. "2D F(R) gravity and AdS2/CFT1correspondence". Europhysics Letters, 22.08.2022. http://dx.doi.org/10.1209/0295-5075/ac8ba0.

Pełny tekst źródła
Streszczenie:
Abstract We studied the canonical structure of 2D F (R) gravity. Its equivalence with Jackiw-Teitelboim gravity is demonstrated when no matter presents. Then, due to AdS2/CFT1 correspondence, such F (R) gravity is equivalent to the Sachdev-Ye–Kitaev models. The singular D → 2 limit of F (R) gravity is also studied. It is shown that in such a limit AdS2/CFT1 correspondence is not realized.
Style APA, Harvard, Vancouver, ISO itp.
50

García-García, Antonio M., Yiyang Jia, Dario Rosa i Jacobus J. M. Verbaarschot. "Sparse Sachdev-Ye-Kitaev model, quantum chaos, and gravity duals". Physical Review D 103, nr 10 (3.05.2021). http://dx.doi.org/10.1103/physrevd.103.106002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii