Gotowa bibliografia na temat „S100A8”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „S100A8”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "S100A8"
Broome, Ann-Marie, David Ryan i Richard L. Eckert. "S100 Protein Subcellular Localization During Epidermal Differentiation and Psoriasis". Journal of Histochemistry & Cytochemistry 51, nr 5 (maj 2003): 675–85. http://dx.doi.org/10.1177/002215540305100513.
Pełny tekst źródłaMitrović Ajtić, Olivera, Tijana Subotički, Miloš Diklić, Dragoslava Đikić, Milica Vukotić, Teodora Dragojević, Emilija Živković, Darko Antić i Vladan Čokić. "Regulation of S100As Expression by Inflammatory Cytokines in Chronic Lymphocytic Leukemia". International Journal of Molecular Sciences 23, nr 13 (22.06.2022): 6952. http://dx.doi.org/10.3390/ijms23136952.
Pełny tekst źródłaPeterova, Eva, Jan Bures, Paula Moravkova i Darina Kohoutova. "Tissue mRNA for S100A4, S100A6, S100A8, S100A9, S100A11 and S100P Proteins in Colorectal Neoplasia: A Pilot Study". Molecules 26, nr 2 (14.01.2021): 402. http://dx.doi.org/10.3390/molecules26020402.
Pełny tekst źródłaMcLachlan, Julia L., Alastair J. Sloan, Anthony J. Smith, Gabriel Landini i Paul R. Cooper. "S100 and Cytokine Expression in Caries". Infection and Immunity 72, nr 7 (lipiec 2004): 4102–8. http://dx.doi.org/10.1128/iai.72.7.4102-4108.2004.
Pełny tekst źródłaRoszkowski, Leszek, Bożena Jaszczyk, Magdalena Plebańczyk i Marzena Ciechomska. "S100A8 and S100A12 Proteins as Biomarkers of High Disease Activity in Patients with Rheumatoid Arthritis That Can Be Regulated by Epigenetic Drugs". International Journal of Molecular Sciences 24, nr 1 (31.12.2022): 710. http://dx.doi.org/10.3390/ijms24010710.
Pełny tekst źródłaHolmannová, Drahomíra, Barbora Císařová, Pavel Borský, Zdeněk Fiala, Ctirad Andrýs, Květoslava Hamaková, Tereza Švadláková i in. "Goeckerman Regimen Reduces Alarmin Levels and PASI Score in Paediatric Patients with Psoriasis". Acta Medica (Hradec Kralove, Czech Republic) 64, nr 4 (2021): 204–12. http://dx.doi.org/10.14712/18059694.2022.3.
Pełny tekst źródłaLeach, Steven T., Hazel M. Mitchell, Carolyn L. Geczy, Philip M. Sherman i Andrew S. Day. "S100 Calgranulin Proteins S100A8, S100A9 and S100A12 are Expressed in the Inflamed Gastric Mucosa ofHelicobacter Pylori-Infected Children". Canadian Journal of Gastroenterology 22, nr 5 (2008): 461–64. http://dx.doi.org/10.1155/2008/308942.
Pełny tekst źródłaTardif, Mélanie R., Julie Andrea Chapeton-Montes, Alma Posvandzic, Nathalie Pagé, Caroline Gilbert i Philippe A. Tessier. "Secretion of S100A8, S100A9, and S100A12 by Neutrophils Involves Reactive Oxygen Species and Potassium Efflux". Journal of Immunology Research 2015 (2015): 1–16. http://dx.doi.org/10.1155/2015/296149.
Pełny tekst źródłaLi, Changyou, Siyuan Li, Changkai Jia, Lingling Yang, Zicheng Song i Yiqiang Wang. "Low Concentration of S100A8/9 Promotes Angiogenesis-Related Activity of Vascular Endothelial Cells: Bridges among Inflammation, Angiogenesis, and Tumorigenesis?" Mediators of Inflammation 2012 (2012): 1–8. http://dx.doi.org/10.1155/2012/248574.
Pełny tekst źródłaWakiya, R., T. Kameda, K. Ueeda, S. Nakashima, H. Shimada, M. F. Mansour, M. Kato i in. "Hydroxychloroquine modulates elevated expression of S100 proteins in systemic lupus erythematosus". Lupus 28, nr 7 (8.05.2019): 826–33. http://dx.doi.org/10.1177/0961203319846391.
Pełny tekst źródłaRozprawy doktorskie na temat "S100A8"
Betz, Christine [Verfasser], i Oliver [Akademischer Betreuer] Einsle. "Structural characterization of the metal-binding ligands S100A8/S100A9 and S100B of the receptor for advanced glycation end products = Strukturelle Charakterisierung der metallbindenden Liganden S100A8/S100A9 und S100B des Rezeptors für Advanced Glycation End Products". Freiburg : Universität, 2013. http://d-nb.info/1115813455/34.
Pełny tekst źródłaLeukert, Nadja. "Molekulare Charakterisierung verschiedener Komplexformen der Calcium-bindenden Proteine S100A8 und S100A9". [S.l. : s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=967777062.
Pełny tekst źródłavan, Hummel Annika Elise. "The Roles of S100A8 and S100A9 in Cartilage: Degradation and Formation". Thesis, The University of Sydney, 2014. http://hdl.handle.net/2123/11521.
Pełny tekst źródłaBaker, Jonathan Richard. "S100A8 in development". Thesis, University College London (University of London), 2008. http://discovery.ucl.ac.uk/1444146/.
Pełny tekst źródłaRaquil, Marie-Astrid. "Études des rôles pro-inflammatoires et prolifératifs des protéines S100A8 et S100A9". Thesis, Université Laval, 2008. http://www.theses.ulaval.ca/2008/25415/25415.pdf.
Pełny tekst źródłaSikora, Kristin [Verfasser]. "RAGE-abhängige S100A8- und S100A9-Expression in humanen THP-1 Zellen / Kristin Sikora". Berlin : Medizinische Fakultät Charité - Universitätsmedizin Berlin, 2009. http://d-nb.info/1023749920/34.
Pełny tekst źródłaLudwig, Stefan [Verfasser]. "Die S100-Proteine S100A8 und S100A9 sowie der Heterodimerkomplex S100A8/A9 im Serum und Plasma als Marker des Prostatakarzinoms : Untersuchungen zu präanalytischen Einflussfaktoren und zur diagnostischen Differenzierung zwischen benigner Prostatahyperplasie und Prostatakarzinom / Stefan Ludwig". Berlin : Medizinische Fakultät Charité - Universitätsmedizin Berlin, 2008. http://d-nb.info/1023022486/34.
Pełny tekst źródłaLaouedj, Malika. "Effets des protéines S100A8 et S100A9 dans la différenciation cellulaire dans la leucémie myéloïde aiguë". Doctoral thesis, Université Laval, 2017. http://hdl.handle.net/20.500.11794/27761.
Pełny tekst źródłaLes leucémies myéloïdes aiguës (LMA) sont des hémopathies rares, mais très agressives. Elles résultent d’un dérèglement du processus d’hématopoïèse qui se caractérise par une prolifération incontrôlée de cellules sanguines immatures engagées dans la lignée myéloïde. En dépit des traitements actuels qui reposent sur l’utilisation d’agents chimiothérapeutiques ciblant les cellules en prolifération, le pronostic des patients souffrants de LMA est très sombre. En effet, seuls 30% des patients souffrants de LMA survivent au-delà de 5 ans suivant la prise en charge thérapeutique. L’identification des acteurs participant au développement et au maintien des LMA est donc cruciale pour l’élaboration d’une stratégie thérapeutique efficace et ciblée. S100A8 et S100A9 sont des protéines fixatrices de calcium exprimées par les neutrophiles et les monocytes. Ce sont des alarmines jouant des rôles clés dans l’inflammation et dans des pathologies causées par une inflammation excessive. Les protéines S100A8 et S100A9 exercent également de multiples fonctions dans divers tumeurs solides. Elles favorisent la formation de niche pré-métastasique et inhibe la réponse immunitaire antitumorale. Une analyse du génome par séquençage a mis en évidence que S100A8 et S100A9 sont fortement exprimées chez les patients atteints de LMA. De plus, l’expression de la protéine S100A8 chez les patients souffrants de LMA serait corrélée avec un faible taux de survie. Principalement étudiées dans les tumeurs solides, les fonctions des protéines S100A8 et S100A9 dans les néoplasies hématologiques telles que les leucémies sont très peu documentées. Dans ces travaux de thèse, nous nous sommes donc intéressés aux rôles exercés par les protéines S100A8 et S100A9 dans les leucémies myéloïdes aiguës. À l’aide d’un modèle murin de LMA induit par la surexpression des facteurs HOXA9 et MEIS1 dans des cellules souches/progénitrices hématopoïétiques, nous avons démontré l’existence d’une fraction de cellules exprimant les protéines S100A8 et S100A9. Celle-ci est également retrouvée chez les patients atteints de leucémies aiguës myélomonocytaires et monocytaires (M4-M5 d’après la classification FAB). Les études menées in vivo et in vitro révèlent que la protéine S100A9 induit la différenciation des cellules leucémiques, tandis que la protéine S100A8, préviens l’effet de S100A9 permettant de maintenir ainsi le phénotype immature des cellules LMA. Le traitement par la protéine recombinante S100A9 permet d’accroitre la maturation des cellules LMA, diminue leur prolifération et prolonge la survie des souris LMA. De la même façon le traitement par les anticorps anti-S100A8 provoque un effet similaire au traitement par la protéine S100A9. Nos résultats suggèrent que de forts ratios de S100A9 sur S100A8 sont requis pour induire la différenciation des cellules LMA. Le mécanisme intracellulaire par lequel S100A9 induit la différenciation des cellules leucémiques a également été étudié dans le cadre de cette thèse. Nous avons identifié que S100A9 via la liaison au récepteur TLR (Toll-like receptor) active les voies de signalisations Mitogen Activated Protein Kinase p38, Jun N-terminal Kinase et extracellular signal-regulated kinases 1 et 2 et provoque la différenciation des cellules leucémiques. Les essais menés sur des cellules primaires de patients malades ont permis de confirmer la capacité de S100A9 et de S100A8 à réguler la différenciation des cellules leucémiques. En somme, les données présentées dans cette thèse contribuent à une meilleure compréhension des rôles des protéines S100A8 et S100A9 dans la différenciation des cellules myéloïdes. Par ailleurs, nos données permettent également d’entrevoir les bénéfices thérapeutiques liés au blocage de S100A8 ou à l’augmentation de S100A9 dans les LMA.
Acute myeloid leukemias (AMLs) are rare but still aggressive hematological diseases. They are the result of a perturbed hematopoietic process characterized by an uncontrolled proliferation of hematopoietic cells committed to the myeloid lineage. Despite current therapy based on chemotherapeutic agents, aimed at killing proliferating cells, prognosis of AML patients is dismal and only 30 % of patients survived beyond 5 years. Identification of actors involved in the initiation and sustaining LMA is crucial to the development of efficient and targeted therapy strategy. S100A8 and S100A9 are calcium-binding proteins predominantly expressed by neutrophils and monocytes, and play key roles in both normal and pathological inflammation. Recently, both proteins were found to promote tumor progression through the establishment of pre-metastatic niches and to inhibit antitumor immune responses. Although S100A8 and S100A9 have been studied in solid cancers, their functions in hematological malignancies remain poorly understood. However, S100A8 and S100A9 are highly expressed in acute myeloid leukemia (AML), and S100A8 expression has been linked to a poor prognosis in AML. Although the roles of these proteins were studies in solid tumor, little is known in their functions in hematological malignancies. We studied in this thesis the role of S100A8 and S100A9 in acute myeloid leukemia. Using AML mouse model of AML surexpressing HOXA9 and MEIS1 in hematopoietic stem and progenitor cells, we identified a small subpopulation of cells expressing S100A8 and S100A9. This subpopulation was consistently found in AML samples from patients with myelomonocytic and monocytic leukemias (M4 and M5 according FAB classification). In vitro and in vivo analyses revealed that S100A9 induces AML cell differentiation, whereas S100A8 prevents differentiation induced by S100A9 activity and maintains AML immature phenotype. Treatment with recombinant S100A9 proteins increased AML cell maturation, induced growth arrest, and prolonged survival in an AML mouse model. Interestingly, anti-S100A8 antibody treatment had effects similar to S100A9 therapy in vivo, suggesting that high ratios of S100A9 over S100A8 are required to induce differentiation. In this thesis, the mechanism of S100A9 leading to differentiation of leukemic cells was also study. Our in vitro studies on the mechanisms/pathways involved in leukemic cell differentiation revealed that binding of S100A9 to toll-like receptor 4 (TLR4) promotes activation of p38 mitogen-activated protein kinase, extracellular signal-regulated kinases 1 and 2, and Jun N-terminal kinase signaling pathways, leading to myelomonocytic and monocytic AML cell differentiation. Overall, our findings indicate that S100A8 and S100A9 are regulators of myeloid differentiation in leukemia and have therapeutic potential in myelomonocytic and monocytic AMLs.
Defrêne, Joan. "Fonctions des protéines S100A8 et S100A9 dans la réponse inflammatoire associée aux maladies auto-immunes". Doctoral thesis, Université Laval, 2020. http://hdl.handle.net/20.500.11794/66869.
Pełny tekst źródłaEndoh, Yasumi Medical Sciences Faculty of Medicine UNSW. "New mechanisms modulating S100A8 gene expression". Publisher:University of New South Wales. Medical Sciences, 2008. http://handle.unsw.edu.au/1959.4/42942.
Pełny tekst źródłaKsiążki na temat "S100A8"
Tirkos, Sam. Investigation of S100A8 and S100A9 as potential genetic modifiers of the pulmonary phenotype in cystic fibrosis mice. Ottawa: National Library of Canada, 2003.
Znajdź pełny tekst źródłaDubois, Josephine. Untersuchung von linearen und zirkulären Transkripten des TRAM1- und S100A6-Genlokus im Kontext des Harnblasenkarzinoms. Wiesbaden: Springer Fachmedien Wiesbaden, 2022. http://dx.doi.org/10.1007/978-3-658-40358-4.
Pełny tekst źródłaWhite, Alexander S. Photographer's guide to the canon powershot s100. [Place of publication not identified]: White Knight Press, 2011.
Znajdź pełny tekst źródłaBrant, Stephen. Distribution of renal S100 proteins in psysiological and pathological models. London: University of East London, 2000.
Znajdź pełny tekst źródłaMcKendry, Amanda Jayne. Comparison of HMB45 monoclonal antibody and S100 poprtein in the immunohistochemical diagnosis of melanoma. [S.l: The Author], 1993.
Znajdź pełny tekst źródłaRuiz, Rafael. S100b: Serum Detection, Functions and Clinical Significance. Nova Science Publishers, Incorporated, 2015.
Znajdź pełny tekst źródłaCuna. S100 Money & Negotiable Instruments. Kendall Hunt Pub Co, 1994.
Znajdź pełny tekst źródłaVIDEO LESSONS S100 S135 S150. MCGRAW-HILL, 1995.
Znajdź pełny tekst źródłaWorld Cup 1994 (LADYBD/S100). Ladybird Books Ltd, 1994.
Znajdź pełny tekst źródłaMerklinger, Sandra Lea. Progression and regression of pulmonary vascular disease related to smooth muscle cell apoptosis, S100A4/Mts1 and fibulin-5. 2005.
Znajdź pełny tekst źródłaCzęści książek na temat "S100A8"
Sreejit, Gopalkrishna, Sunil Kiran Nooti, Baskaran Athmanathan i Prabhakara Reddy Nagareddy. "S100A8/A9 in Myocardial Infarction". W Methods in Molecular Biology, 739–54. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9030-6_46.
Pełny tekst źródłaGharibyan, Anna L., Dina Raveh i Ludmilla A. Morozova-Roche. "S100A8/A9 Amyloidosis in the Ageing Prostate: Relating Ex Vivo and In Vitro Studies". W Methods in Molecular Biology, 387–401. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-551-0_26.
Pełny tekst źródłaDonato, Rosario, Guglielmo Sorci i Ileana Giambanco. "S100A6". W Encyclopedia of Signaling Molecules, 4805–13. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-67199-4_101531.
Pełny tekst źródłaDonato, Rosario, Guglielmo Sorci i Ileana Giambanco. "S100A6". W Encyclopedia of Signaling Molecules, 1–10. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4614-6438-9_101531-1.
Pełny tekst źródłaYatime, Laure. "Structural Analysis of S100A8 Complex with Zinc and Calcium: A General Protocol for the Study of S100 Proteins in the Presence of Divalent Cations by X-Ray Crystallography". W Methods in Molecular Biology, 417–35. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9030-6_26.
Pełny tekst źródłaPrudovsky, Igor, Thallapuranam Krishnaswamy Suresh Kumar i Rosario Donato. "S100a13". W Encyclopedia of Signaling Molecules, 4801–4. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-67199-4_101530.
Pełny tekst źródłaPrudovsky, Igor, Thallapuranam Krishnaswamy Suresh Kumar i Rosario Donato. "S100a13". W Encyclopedia of Signaling Molecules, 1–4. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4614-6438-9_101530-1.
Pełny tekst źródłaGressner, A. M., i O. A. Gressner. "S100A12-Protein". W Lexikon der Medizinischen Laboratoriumsdiagnostik, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-49054-9_2726-1.
Pełny tekst źródłaGressner, A. M., i O. A. Gressner. "S100A12-Protein". W Springer Reference Medizin, 2097. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-48986-4_2726.
Pełny tekst źródłaHouse, Reniqua P., Sarah C. Garrett i Anne R. Bresnick. "Moving Aggressively: S100A4 and Tumor Invasion". W Signaling Pathways and Molecular Mediators in Metastasis, 91–113. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-2558-4_4.
Pełny tekst źródłaStreszczenia konferencji na temat "S100A8"
Crowe, L. A. N., M. Akbar, K. Patommel, S. M. Kitson, E. Garcia Melchor, D. S. Gilchrist, G. A. Murrell, I. B. McInnes i N. L. Millar. "AB0068 Alarmins s100a8 and s100a9 modulate the inflammatory microenvironment in early tendinopathy". W Annual European Congress of Rheumatology, EULAR 2018, Amsterdam, 13–16 June 2018. BMJ Publishing Group Ltd and European League Against Rheumatism, 2018. http://dx.doi.org/10.1136/annrheumdis-2018-eular.7019.
Pełny tekst źródłaLee, Eunmi, Maria Ouzounova, Raziye Piranlioglu, Abdeljabar El Andaloussi, Sena Arbag, Gang Zhou i Hasan Korkaya. "Abstract 2956: Chemical library screen identifies compounds that target S100A8/S100A9 complex and MDSC accumulation". W Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-2956.
Pełny tekst źródłaGhavami, Saeid, Thomas Vogl, Johannes Roth, Helmut Unruh i Andrew J. Halayko. "S100A8 And S100A9 Homo-, And Hetero-Dimers Affect Extracellular Matrix In Human Smooth Muscle With Different Down Stream Signalling". W American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California. American Thoracic Society, 2012. http://dx.doi.org/10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a6682.
Pełny tekst źródłaGhavami, S., T. Hynes, T. Vogl, S. Basu, C. Kerkhoff, J. Roth i AJ Halayko. "A Role for S100A8/A9 in Allergic Airway Inflammation?." W American Thoracic Society 2009 International Conference, May 15-20, 2009 • San Diego, California. American Thoracic Society, 2009. http://dx.doi.org/10.1164/ajrccm-conference.2009.179.1_meetingabstracts.a6326.
Pełny tekst źródłaGemicioglu, Bilun, Ozgur Yasar i Tulay Akcay. "Significance of serum YKL-40, S100A8, S100A9, calprotectin, periostin and LRG1 levels in patients with newly diagnosed, controlled and uncontrolled asthma". W ERS International Congress 2018 abstracts. European Respiratory Society, 2018. http://dx.doi.org/10.1183/13993003.congress-2018.pa2023.
Pełny tekst źródłaLiya, LI, Zuo Xiaoxia, Xiao Yizhi, DI Liu, Luo Hui i Zhu Honglin. "AB0211 NEUTROPHIL-DERIVED EXOSOME S100A8/A9 INHIBITS ANGIOGENESIS IN SYSTEMIC SCLEROSIS". W Annual European Congress of Rheumatology, EULAR 2019, Madrid, 12–15 June 2019. BMJ Publishing Group Ltd and European League Against Rheumatism, 2019. http://dx.doi.org/10.1136/annrheumdis-2019-eular.6484.
Pełny tekst źródłaPopp, D., F. Rühle, W. de Jager, T. Vogl i J. Roth. "OP0091 S100a8 triggers a novel immune-regulatory mechanism in developing dendritic cells". W Annual European Congress of Rheumatology, 14–17 June, 2017. BMJ Publishing Group Ltd and European League Against Rheumatism, 2017. http://dx.doi.org/10.1136/annrheumdis-2017-eular.4960.
Pełny tekst źródłaKruisbergen, N., S. van Dalen, M. van den Bosch, A. Blom i P. van Lent. "SAT0067 Role of nox2-derived reactive oxygen species in s100a8/a9-driven inflammatory osteoarthritis". W Annual European Congress of Rheumatology, EULAR 2018, Amsterdam, 13–16 June 2018. BMJ Publishing Group Ltd and European League Against Rheumatism, 2018. http://dx.doi.org/10.1136/annrheumdis-2018-eular.5421.
Pełny tekst źródłaLi, Si, Fangying Xu, Lili Wang, Hui Li i Maode Lai. "Abstract 4723: Improving prognosis or promoting progression? Double sword of S100A8 in colorectal cancer". W Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-4723.
Pełny tekst źródłaZervides, Kristoffer Alexander, Andreas Jern, Jessica Nystedt, Petra Nilsson, Pia C. Sundgren, Birgitta Gullstrand, Anders A. Bengtsson i Andreas Jönsen. "P43 Serum S100A8/A9 concentrations are associated with neuropsychiatric involvement and fatigue in SLE". W 12th European Lupus Meeting. Lupus Foundation of America, 2020. http://dx.doi.org/10.1136/lupus-2020-eurolupus.91.
Pełny tekst źródłaRaporty organizacyjne na temat "S100A8"
Emberley, Ethan D., i Peter Watson. The Role of S100A7/RANBPM Interaction in Human Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, sierpień 2001. http://dx.doi.org/10.21236/ada396984.
Pełny tekst źródłaEmberley, Ethan, i Peter Watson. The Role of S100A7/RANBPM Interaction in Human Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, sierpień 2002. http://dx.doi.org/10.21236/ada412819.
Pełny tekst źródłaEmberley, Ethan D., i Peter Watson. The Role of S100A7/RANBPM Interaction in Human Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, sierpień 2003. http://dx.doi.org/10.21236/ada418754.
Pełny tekst źródłaWest, Nathan. Exploring and Exploiting the Protein S100A7 as a New Target for Breast Cancer Therapy. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2010. http://dx.doi.org/10.21236/ada520729.
Pełny tekst źródłaKim, Edward J., i David Helfman. Characterization of Molecular Factors Critical to the S100A4 (A Metastasis-Associated Protein) - Dependent Increase in Motility of Breast Cancer Cells. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2004. http://dx.doi.org/10.21236/ada424207.
Pełny tekst źródłaState Savings Bank of Tasmania - Hobart (Chief Office) - Depositors Ledgers - Hobart - Accounts - S1 - S1000 -1908-1912. Reserve Bank of Australia, marzec 2021. http://dx.doi.org/10.47688/rba_archives_2006/20525.
Pełny tekst źródłaOVERHANG EFFECT ON WEB CRIPPLING CAPACITY OF COLDFORMED AUSTENITIC STAINLESS STEEL SHS MEMBERS: AN EXPERIMENTAL STUDY. The Hong Kong Institute of Steel Construction, sierpień 2022. http://dx.doi.org/10.18057/icass2020.p.343.
Pełny tekst źródłaGovernment Savings Bank of New South Wales - Balmain - Depositors Ledgers - Friendly Society (Loose Leaf System) Cheque Accounts S1-S100 (incl. Continuation) - 1930-1933. Reserve Bank of Australia, marzec 2021. http://dx.doi.org/10.47688/rba_archives_2006/22603.
Pełny tekst źródłaA SURROGATE MODEL TO ESTIMATE THE AXIAL COMPRESSIVE CAPACITY OF COLD-FORMED STEEL OPEN BUILT-UP SECTIONS. The Hong Kong Institute of Steel Construction, sierpień 2022. http://dx.doi.org/10.18057/icass2020.p.316.
Pełny tekst źródła