Gotowa bibliografia na temat „S100A12”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „S100A12”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "S100A12"
Broome, Ann-Marie, David Ryan i Richard L. Eckert. "S100 Protein Subcellular Localization During Epidermal Differentiation and Psoriasis". Journal of Histochemistry & Cytochemistry 51, nr 5 (maj 2003): 675–85. http://dx.doi.org/10.1177/002215540305100513.
Pełny tekst źródłaMcLachlan, Julia L., Alastair J. Sloan, Anthony J. Smith, Gabriel Landini i Paul R. Cooper. "S100 and Cytokine Expression in Caries". Infection and Immunity 72, nr 7 (lipiec 2004): 4102–8. http://dx.doi.org/10.1128/iai.72.7.4102-4108.2004.
Pełny tekst źródłaLeach, Steven T., Hazel M. Mitchell, Carolyn L. Geczy, Philip M. Sherman i Andrew S. Day. "S100 Calgranulin Proteins S100A8, S100A9 and S100A12 are Expressed in the Inflamed Gastric Mucosa ofHelicobacter Pylori-Infected Children". Canadian Journal of Gastroenterology 22, nr 5 (2008): 461–64. http://dx.doi.org/10.1155/2008/308942.
Pełny tekst źródłaTardif, Mélanie R., Julie Andrea Chapeton-Montes, Alma Posvandzic, Nathalie Pagé, Caroline Gilbert i Philippe A. Tessier. "Secretion of S100A8, S100A9, and S100A12 by Neutrophils Involves Reactive Oxygen Species and Potassium Efflux". Journal of Immunology Research 2015 (2015): 1–16. http://dx.doi.org/10.1155/2015/296149.
Pełny tekst źródłaSHISHIBORI, Tsuyoshi, Yuhta OYAMA, Osamu MATSUSHITA, Kayoko YAMASHITA, Hiromi FURUICHI, Akinobu OKABE, Hajime MAETA, Yuiro HATA i Ryoji KOBAYASHI. "Three distinct anti-allergic drugs, amlexanox, cromolyn and tranilast, bind to S100A12 and S100A13 of the S100 protein family". Biochemical Journal 338, nr 3 (8.03.1999): 583–89. http://dx.doi.org/10.1042/bj3380583.
Pełny tekst źródłaBASIKA, TATIANA, NATALIA MUÑOZ, CECILIA CASARAVILLA, FLORENCIA IRIGOÍN, CARLOS BATTHYÁNY, MARIANA BONILLA, GUSTAVO SALINAS i in. "Phagocyte-specific S100 proteins in the local response to theEchinococcus granulosuslarva". Parasitology 139, nr 2 (5.01.2012): 271–83. http://dx.doi.org/10.1017/s003118201100179x.
Pełny tekst źródłaZeng, Meng-Lu, Xian-Jin Zhu, Jin Liu, Peng-Chong Shi, Yan-Li Kang, Zhen Lin i Ying-Ping Cao. "An Integrated Bioinformatic Analysis of the S100 Gene Family for the Prognosis of Colorectal Cancer". BioMed Research International 2020 (26.11.2020): 1–15. http://dx.doi.org/10.1155/2020/4746929.
Pełny tekst źródłaThames, Brittany E., James W. Barr, Jan S. Suchodolski, Jörg M. Steiner i Romy M. Heilmann. "Prospective evaluation of S100A12 and S100A8/A9 (calprotectin) in dogs with sepsis or the systemic inflammatory response syndrome". Journal of Veterinary Diagnostic Investigation 31, nr 4 (6.06.2019): 645–51. http://dx.doi.org/10.1177/1040638719856655.
Pełny tekst źródłaPeterova, Eva, Jan Bures, Paula Moravkova i Darina Kohoutova. "Tissue mRNA for S100A4, S100A6, S100A8, S100A9, S100A11 and S100P Proteins in Colorectal Neoplasia: A Pilot Study". Molecules 26, nr 2 (14.01.2021): 402. http://dx.doi.org/10.3390/molecules26020402.
Pełny tekst źródłaÅberg, Anna-Maja, Sofia Halin Bergström, Elin Thysell, Lee-Ann Tjon-Kon-Fat, Jonas A. Nilsson, Anders Widmark, Camilla Thellenberg-Karlsson, Anders Bergh, Pernilla Wikström i Marie Lundholm. "High Monocyte Count and Expression of S100A9 and S100A12 in Peripheral Blood Mononuclear Cells Are Associated with Poor Outcome in Patients with Metastatic Prostate Cancer". Cancers 13, nr 10 (17.05.2021): 2424. http://dx.doi.org/10.3390/cancers13102424.
Pełny tekst źródłaRozprawy doktorskie na temat "S100A12"
Goyette, Jesse Davis Medical Sciences Faculty of Medicine UNSW. "The extracellular functions of S100A12". Publisher:University of New South Wales. Medical Sciences, 2008. http://handle.unsw.edu.au/1959.4/41302.
Pełny tekst źródłaMoroz, Olga. "Structural studies on human S100A12". Thesis, University of York, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.403963.
Pełny tekst źródłaChapeton, Montes Julie Andrea. "Caractérisation des voies alternatives de sécrétion des protéines S100A8/A9 et S100A12 par les neutrophiles humains". Master's thesis, Université Laval, 2015. http://hdl.handle.net/20.500.11794/26156.
Pełny tekst źródłaAlthough S100A8/A9 (calprotectin) and S100A12 proteins expressed by neutrophils lack a signal peptide, they are found in the serum of patients with various inflammatory diseases. However, the mechanisms of secretion and the agonists that promote their secretion are still unknown. We hypothesized that several alternative secretory pathways and several agonists of neutrophils may participate in the release of S100A8/A9 and S100A12 protein. Initially, we studied the stimuli inducing the secretion of calprotectin and / or S100A12. In a second part, we were interested in signals and alternative mechanisms of secretion involved in the release of the calprotectin and S100A12. In conclusion, this study shows the complexity of alternative secretion pathways involved in S100 secretion and that these pathways are influenced by the activation of neutrophils by various agonists.
Mossel, Dieuwertje Marije [Verfasser], i Julia [Akademischer Betreuer] Kzhyshkowska. "Epigenetic regulation of S100A9 and S100A12 expression in monocytes-macrophage system in hyperglycemic conditions / Dieuwertje Marije Mossel ; Betreuer: Julia Kzhyshkowska". Heidelberg : Universitätsbibliothek Heidelberg, 2020. http://d-nb.info/1219303100/34.
Pełny tekst źródłaMossel, Dieuwertje M. [Verfasser], i Julia [Akademischer Betreuer] Kzhyshkowska. "Epigenetic regulation of S100A9 and S100A12 expression in monocytes-macrophage system in hyperglycemic conditions / Dieuwertje Marije Mossel ; Betreuer: Julia Kzhyshkowska". Heidelberg : Universitätsbibliothek Heidelberg, 2020. http://d-nb.info/1219303100/34.
Pełny tekst źródłaDubois, Christelle. "Confirmation de biomarqueurs pour le pronostic du sepsis et développement de tests rapides High plasma level of S100A8/S100A9 and S100A12 at admission indicates a higher risk of death in septic shock patients Top-down and bottom-up proteomics of circulating S100A8/S100A9 complexes in plasma of septic shock patients". Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS521.
Pełny tekst źródłaSepsis is the 3rd leading cause of death in Western countries, with a mortality rate between 20 and 50% depending on the severity. The 'prediction' of the patient's clinical outcome is essential to establish the most appropriate treatment. Some inflammation or infection markers protein (CRP, procalcitonin) are cited for clinical follow-up of patients but lack specificity for sepsis. On the other hand, "omics" studies have generated lists of potential biomarkers of sepsis prognosis. However, none have yet been validated and/or confirmed based on the severity of the sepsis and the patient's fate. This requires access not only to fully characterized patient cohorts but also to robust and validated quantitative methods. Mass spectrometry provides a high level of specificity and high multiplex capacity and that would allow to confirm the interest of one or more of these proteins for sepsis prognosis. Immunological assays provide, in addition to sensitivity and specificity, a simple and rapid routine clinical implementation. First, a list of biomarkers identified with patient cohorts was established from the literature. Then, methods to quantify these candidate biomarkers were developed. On the one hand, we have been interested in quantifying calgranulins in plasma by developing ELISAs and mass spectrometry methods using bottom-up and top-down approaches. On the other hand, two multiplex quantification methods by mass spectrometry with and without immunopurification step according to protein concentrations have been developed to verify the relevance of the list of potential biomarkers. All these methods were applied to a cohort of 49 patients with septic shock
Citadini, Ana Paula da Silva. "Estudos da dinâmica estrutural da proteína ligante de cálcio S100A12 humana e da lisozima T4". Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/76/76132/tde-05072011-134514/.
Pełny tekst źródłaThe work presented here was conceived with two main objectives. The first one, more general, involved the implementation of a new methodology for the study of conformational changes in proteins, i.e., its structural dynamics. The technique of Site-directed Spin Labeling combined with Electronic Paramagnetic Resonance (SDSL-EPR) are the pillars of this new method, which is now part of the set of techniques available at the Grupo de Biofísica Molecular Sérgio Mascarenhas, Instituto de Física de São Carlos (USP). The second objective, more specific, represented the path actually taken to achieve the overall goal. Therefore, it was proposed to study the structure-function correlation in two interesting biological systems. The first involved the study of the movement of the helices that form the structure of the human calcium binding protein S100A12 (HS100A12) induced by calcium and zinc ions. Knowing that, besides Ca+2, human S100A12 has also affinity for other divalent metals, such as Zn+2 and Cu+2 ions, and that the formation of different protein oligomers is governed by the concentration of Ca+2 and Zn+2, we performed spectroscopic studies using circular dichroism (CD) to investigate the thermal stability of protein HS100A12 in the presence and absence of calcium and zinc. Conformational changes in the structure of HS100A12 were monitored by producing a series of mutants (singles and doubles) in which residues in helices B, C and D were replaced by cysteine and subsequently labeled with a magnetic probe MTSSL and then analyzed via SDSL-EPR. The latter consisted of the EPR spectra measurement of many mutants at room temperature to study the effects of the presence of ions on the dynamics experienced by the probe in different positions. In addition, we performed measurements of the distance between two probes inserted in the protein structure, thereby, seeking to improve the understanding of the effect of the ions presence on the protein. Finally, due to the fact that HS100A12 is involved in some events of cell signaling and interaction with the Receptor for Advanced Glycation End Products (RAGE), we also decided to study the interaction of protein with models of biomembranes using Langmuir monolayers. In the other problem of interest, we used a variety of mutants of the enzyme T4 lysozyme, a protein standard, in order to obtain more details about its structure-function correlation and make more solid the understanding of SDSL technique. Initially, we conducted a study about the alleged creation of a cavity in the hydrophobic C-terminal portion of the enzyme, when we replaced the Leu 133 by Ala and/or Gly, or when we changed a large residue for a smaller one, because it is believed that the protein undergoes a structural adjustment in order to fill the gap created by this substitution. For this, we studied by SDSL the α-helix H motion, inserting the spin label in a neighbor position of the mutated residue. Additionally, we performed an experiment of \"transmutation\" with the enzyme T4L in order to investigate the nature of contributions for different dynamic modes experienced by the spin label when it is introduced in topologically similar sites.
Reis, Renata Almeida Garcia. "Estudo dinâmico conformacional da proteína calgranulina C (S100A12) mediante interação com íons e receptor RAGE". Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/60/60136/tde-03072012-163222/.
Pełny tekst źródłaCalgranulin C (S100A12) is a member of the S100 family of EF-hand calcium-binding proteins. Human S100A12 is predominantly expressed by granulocytes and is markedly overexpressed in inflammatory compartments. Elevated serum levels of S100A12 are found in patients suffering from various inflammatory, neurodegenerative, metabolic, and neoplasic disorders. Intracellular S100A12 exists as an anti-parallel homodimer. Each monomer is composed of a C-terminal, classic EF-hand (HI - LI - HII), an N-terminal, pseudo EF-hand (HIII - LIII - HIV). The motifs are linked by the hinge-region. Calgranulin C also binds zinc and copper ions in a site formed by both subunits of dimer. Changes in cytosolic ions concentrations regulate a wide variety of cellular process, and ions-binding proteins are the key molecules in signal transduction, differentiation, and cell cycle control. The mechanism by which calgranulin C modulates the course of inflammatory process is related to its interaction with the receptor for advanced glycated products (RAGE). In order to obtain details about the mechanism involved in cell signaling steps in which S100A12 participates, our goal was to qualify and quantify the activity conformational of S100A12 domains, induced by variations of intensive thermodynamic parameters, as changes in the concentration of ions. Furthermore we investigated the details of the interaction between S100A12 and RAGE in order to elucidate the region of the receptor which interacts with S100A12 and what are the residues involved in this interaction. In order to access the influence of the presence of ions over the conformational dynamics of S100A12, molecular dynamics simulations were performed using the GROMACS suite with the OPLS-AA force field and NVT ensemble. The initial structures used were experimentally determined by X-ray crystallography (PDB ID: 2WCE and 1E8A). They were separately submitted to different concentrations of sodium, calcium and zinc chloride and solvated with the SPC water model. Our results suggest that at low concentrations of Ca²?, LI remains occupied by Na?. During calcium-waves, it can reach the protein exclusively through LIII (in EF-2). As the Zn²? concentration rises, it contributes to the Na? unbinding from LI, an event that involves the residue ASP-25, which allows LI to open and the Na? to unbind. Furthermore, because of its high structural deformability, HIII is strongly influenced by both Na? and Ca²? ions which, in certain concentrations, leads to partial loss of this helix and of HIIa (Hinge-Region) and increases in the flexibility of this region, although only Ca²? is able to bind, through HIII, to the region near LIII. Regarding the RAGE studies, molecular docking essays and SMD (Steered Molecular Dynamics) simulations were performed. Our data analysis suggests that the interaction between S100A12 and RAGE takes place through both V and C1 RAGE domains and depends upon the interdomain region. Additionally, we observed that higher oligomeric states, e.g. S100A12 hexamers (PDB ID: 1GQM), have more interaction possibilites with RAGE and that, according to our results, in this case the interacting region of S100A12 comprises the N- and C-terminal portions of HI and Cterminal of HIV.
Augner, Kerstin Verfasser], i Monika [Akademischer Betreuer] [Pischetsrieder. "Auswirkung nicht-enzymatischer posttranslationaler Modifikationen auf Konstitution, Oligomerisierung und Biofunktionalität von S100A12 / Kerstin Augner. Gutachter: Monika Pischetsrieder". Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2013. http://d-nb.info/1054164886/34.
Pełny tekst źródłaGarcia, Assuero Faria. "Estudo da estabilidade estrutural de uma proteína recombinante ligante de zinco e cálcio - Calgranulina C (S100A12) porcina". Universidade de São Paulo, 2007. http://www.teses.usp.br/teses/disponiveis/76/76132/tde-30042007-141038/.
Pełny tekst źródłaPorcine S100A12 is a member of S100 family, a small acidic calcium-binding proteins group characterized by the presence of two EF-hand motifs. These proteins are involved in many cellular events as the regulation of protein phosphorylation, enzymatic activity, Ca+2 homeostasis, inflammatory processes and intermediate filament polymerization. In addition, some of these proteins can bind Zn+2, which can affect the binding of Ca+2 particularly to S100 proteins. In this study, the gene sequence encoding S100A12 was obtained by the synthetic gene approach using E. coli codon bias allowing the recombinant production of large amounts of the protein. We report here a thermodynamic study on the structural stability of this recombinant protein and its interaction with divalent ions using circular dichroism and extrinsic fluorescence. The folding/unfolding induced by urea or temperature indicated a reversible process and the binding of Zn+2 or Zn+2 and Ca+2 to S100A12 increasing its stability. The interaction of the ANS probe with the protein in the ligant presence can lead to exposition of hydrofobic regions allowing its interaction with target macromolecules. Taken together, the results indicated that porcine S100A12 may assume different conformations that could be correlated to its physiological function.
Książki na temat "S100A12"
Tirkos, Sam. Investigation of S100A8 and S100A9 as potential genetic modifiers of the pulmonary phenotype in cystic fibrosis mice. Ottawa: National Library of Canada, 2003.
Znajdź pełny tekst źródłaMerklinger, Sandra Lea. Progression and regression of pulmonary vascular disease related to smooth muscle cell apoptosis, S100A4/Mts1 and fibulin-5. 2005.
Znajdź pełny tekst źródłaCzęści książek na temat "S100A12"
Gressner, A. M., i O. A. Gressner. "S100A12-Protein". W Springer Reference Medizin, 2097. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-48986-4_2726.
Pełny tekst źródłaGressner, A. M., i O. A. Gressner. "S100A12-Protein". W Lexikon der Medizinischen Laboratoriumsdiagnostik, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-49054-9_2726-1.
Pełny tekst źródłaLeach, Steven T., i Andrew S. Day. "Enzyme-Linked Immunosorbent Assay to Measure S100A12 in Fecal Samples of Children and Adults". W Methods in Molecular Biology, 755–61. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9030-6_47.
Pełny tekst źródłaPrudovsky, Igor, Thallapuranam Krishnaswamy Suresh Kumar i Rosario Donato. "S100a13". W Encyclopedia of Signaling Molecules, 4801–4. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-67199-4_101530.
Pełny tekst źródłaPrudovsky, Igor, Thallapuranam Krishnaswamy Suresh Kumar i Rosario Donato. "S100a13". W Encyclopedia of Signaling Molecules, 1–4. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4614-6438-9_101530-1.
Pełny tekst źródłaDonato, Rosario, Guglielmo Sorci i Ileana Giambanco. "S100A6". W Encyclopedia of Signaling Molecules, 4805–13. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-67199-4_101531.
Pełny tekst źródłaDonato, Rosario, Guglielmo Sorci i Ileana Giambanco. "S100A6". W Encyclopedia of Signaling Molecules, 1–10. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4614-6438-9_101531-1.
Pełny tekst źródłaFoertsch, Franziska, i Christian Melle. "Analysis of S100A11 in DNA Damage Repair". W Methods in Molecular Biology, 447–60. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9030-6_28.
Pełny tekst źródłaMost, Patrick, Philip Raake, Christophe Weber, Hugo A. Katus i Sven T. Pleger. "S100A1 Gene Therapy in Small and Large Animals". W Methods in Molecular Biology, 407–20. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-62703-230-8_25.
Pełny tekst źródłaSreejit, Gopalkrishna, Sunil Kiran Nooti, Baskaran Athmanathan i Prabhakara Reddy Nagareddy. "S100A8/A9 in Myocardial Infarction". W Methods in Molecular Biology, 739–54. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9030-6_46.
Pełny tekst źródłaStreszczenia konferencji na temat "S100A12"
Kim, Hye Jeong, Karam Kim, Jin Hyun Kang i Il Yup Chung. "Role of NLRP3 inflammasome and ATP in S100A12-induced MUC5AC production in airway epithelial cells". W ERS International Congress 2018 abstracts. European Respiratory Society, 2018. http://dx.doi.org/10.1183/13993003.congress-2018.pa2185.
Pełny tekst źródłaOrczyk, K., i E. Smolewska. "THU0585 Personalised treatment in juvenile idiopathic arthritis – future or fiction? preliminary results of using s100a8a9, s100a12 and vascular endothelial cadherin as diagnostic and prognostic biomarkers". W Annual European Congress of Rheumatology, EULAR 2018, Amsterdam, 13–16 June 2018. BMJ Publishing Group Ltd and European League Against Rheumatism, 2018. http://dx.doi.org/10.1136/annrheumdis-2018-eular.2440.
Pełny tekst źródłaGunaldi, M., Y. Okuturlar, A. Üstüngüler, C. Akarsu i A. Kural. "Abstract P4-04-23: Clinical importance of S100A9 and S100A2 in breast cancer". W Abstracts: Thirty-Eighth Annual CTRC-AACR San Antonio Breast Cancer Symposium; December 8-12, 2015; San Antonio, TX. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.sabcs15-p4-04-23.
Pełny tekst źródłaKatono, Ken, Yuichi Sato, Shinichiro Ryuge, Ryo Nagashio, Masanori Yokoba, Masato Katagiri, Kazu Shiomi, Yukitoshi Satoh i Noriyuki Masuda. "Co-expression of S100A14 and S100A16 is a predictive marker for platinum-based adjuvant chemotherapy in resected lung adenocarcinomas". W ERS International Congress 2016 abstracts. European Respiratory Society, 2016. http://dx.doi.org/10.1183/13993003.congress-2016.oa3339.
Pełny tekst źródłaCrowe, L. A. N., M. Akbar, K. Patommel, S. M. Kitson, E. Garcia Melchor, D. S. Gilchrist, G. A. Murrell, I. B. McInnes i N. L. Millar. "AB0068 Alarmins s100a8 and s100a9 modulate the inflammatory microenvironment in early tendinopathy". W Annual European Congress of Rheumatology, EULAR 2018, Amsterdam, 13–16 June 2018. BMJ Publishing Group Ltd and European League Against Rheumatism, 2018. http://dx.doi.org/10.1136/annrheumdis-2018-eular.7019.
Pełny tekst źródłaLee, Eunmi, Maria Ouzounova, Raziye Piranlioglu, Abdeljabar El Andaloussi, Sena Arbag, Gang Zhou i Hasan Korkaya. "Abstract 2956: Chemical library screen identifies compounds that target S100A8/S100A9 complex and MDSC accumulation". W Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-2956.
Pełny tekst źródłaGhavami, Saeid, Thomas Vogl, Johannes Roth, Helmut Unruh i Andrew J. Halayko. "S100A8 And S100A9 Homo-, And Hetero-Dimers Affect Extracellular Matrix In Human Smooth Muscle With Different Down Stream Signalling". W American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California. American Thoracic Society, 2012. http://dx.doi.org/10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a6682.
Pełny tekst źródłaGemicioglu, Bilun, Ozgur Yasar i Tulay Akcay. "Significance of serum YKL-40, S100A8, S100A9, calprotectin, periostin and LRG1 levels in patients with newly diagnosed, controlled and uncontrolled asthma". W ERS International Congress 2018 abstracts. European Respiratory Society, 2018. http://dx.doi.org/10.1183/13993003.congress-2018.pa2023.
Pełny tekst źródłaBou Khzam, Lara, Katherine Hajjar i Nasrin Mesaeli. "Hyperglycemia Regulates Annexin A2-s100a10 Localization In Endothelial Cells". W Qatar Foundation Annual Research Conference Proceedings. Hamad bin Khalifa University Press (HBKU Press), 2014. http://dx.doi.org/10.5339/qfarc.2014.hbpp0712.
Pełny tekst źródłaChiu, David Kung-Chun, Carmen Chak-Lui Wong, Irene Oi-Lin Ng i Aki Pui-Wah Tse. "Abstract 533: S100A10 as a novel biomarker in hepatocellular carcinoma". W Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-533.
Pełny tekst źródłaRaporty organizacyjne na temat "S100A12"
Emberley, Ethan D., i Peter Watson. The Role of S100A7/RANBPM Interaction in Human Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, sierpień 2001. http://dx.doi.org/10.21236/ada396984.
Pełny tekst źródłaEmberley, Ethan D., i Peter Watson. The Role of S100A7/RANBPM Interaction in Human Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, sierpień 2003. http://dx.doi.org/10.21236/ada418754.
Pełny tekst źródłaEmberley, Ethan, i Peter Watson. The Role of S100A7/RANBPM Interaction in Human Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, sierpień 2002. http://dx.doi.org/10.21236/ada412819.
Pełny tekst źródłaWest, Nathan. Exploring and Exploiting the Protein S100A7 as a New Target for Breast Cancer Therapy. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2010. http://dx.doi.org/10.21236/ada520729.
Pełny tekst źródłaKim, Edward J., i David Helfman. Characterization of Molecular Factors Critical to the S100A4 (A Metastasis-Associated Protein) - Dependent Increase in Motility of Breast Cancer Cells. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2004. http://dx.doi.org/10.21236/ada424207.
Pełny tekst źródła