Gotowa bibliografia na temat „Runnelling”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Runnelling”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Runnelling"

1

Dale, Pat E. R., i Jon M. Knight. "Managing Salt Marshes for Mosquito Control: Impacts of Runnelling, Open Marsh Water Management and Grid-ditching in Sub-tropical Australia". Wetlands Ecology and Management 14, nr 3 (czerwiec 2006): 211–20. http://dx.doi.org/10.1007/s11273-005-1113-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Dale, Pat, Jon Knight i Mark Breitfuss. "An Australian form of Open Marsh Water Management (runnelling): long term monitoring, ancillary and extended research". Wetlands Ecology and Management, 26.05.2021. http://dx.doi.org/10.1007/s11273-021-09806-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Knight, J. M., S. K. Marx i P. E. R. Dale. "Assessment of runnelling as a form of mosquito control in saltmarsh: efficacy, environmental impacts and management". Wetlands Ecology and Management, 28.11.2021. http://dx.doi.org/10.1007/s11273-021-09850-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Runnelling"

1

Latchford, Jane Ann. "The effectiveness and environmental impacts of runnelling, a mosquito control technique". Thesis, Latchford, Jane Ann (1997) The effectiveness and environmental impacts of runnelling, a mosquito control technique. PhD thesis, Murdoch University, 1997. https://researchrepository.murdoch.edu.au/id/eprint/51351/.

Pełny tekst źródła
Streszczenie:
This study is concerned with the effectiveness and ecological impacts of a mosquito control technique called 'runnelling'. The objective of runnelling is to provide a low cost, low maintenance physical modification of the environment to provide effective control of saltmarsh mosquitoes with few other environmental impacts. The major objective of this thesis was to find out if runnelling is an effective means of controlling mosquito populations, and if so, to determine if the technique produces unacceptable changes in the ecology of saltmarshes. Four saltmarshes were chosen for study, all known mosquito breeding sites in the Peel-Harvey Estuary. The general approach was to monitor populations of flora and fauna in control and funnelled pans before and after runnelling. There was a significant reduction in larval mosquito populations at all runnelled sites, most consistently in spring and summer. Mosquito populations were reduced to below problem levels in most instances. The runnels operated effectively shortly after construction through a combination of flushing, increased predation and reduced oviposition. Runnel maintenance was high at one site, where they had been incorrectly positioned, but all other runnels only required cutting back of vegetation after summer. The environmental changes resulting from runnelling were either minimal in comparison to the natural variations encountered on the marsh, or they increased productivity. Runnelling is recommended as a appropriate method of mosquito control where the productivity of the saltmarsh is important ecologically. It is a safer mosquito control technique than the favoured alternative, the chemical temephos, which can kill non target fauna.
Style APA, Harvard, Vancouver, ISO itp.
2

Breitfuss, Mark, i n/a. "The Effects of Physical Habitat Modification for Mosquito Control, Runnelling, on Selected Non-Target Saltmarsh Resources". Griffith University. Australian School of Environmental Studies, 2003. http://www4.gu.edu.au:8080/adt-root/public/adt-QGU20031126.074304.

Pełny tekst źródła
Streszczenie:
Runnelling is a popular method of physical habitat modification employed on saltmarshes to control pest mosquito populations. The runnelling method involves linking the tidal source to isolated mosquito breeding pools via shallow channels that enable slow water movement of low amplitude tides. Increased tidal flushing inhibits mosquito development. The range of organisms which inhabit saltmarsh are likely to be influenced by altered tidal conditions as they exhibit specific physicochemical requirements for feeding, burrowing or growth. The dynamic nature of saltmarsh may mean that changes to the tidal frequency of a particular region of the saltmarsh promotes extension of marine-like conditions. Because runnels increase the frequency of flooding tidal events in specific regions of the saltmarsh this study predicted that resulting changes would be evident in the physical conditions of saltmarsh substrate, in the transport of buoyant vegetative propagules, in the population characteristics of surface grazing snails and in the density and aperture of crab burrows after flooding and non-flooding tidal events. The physical impacts of runnelling were determined at three marshes which appeared similar in terms of topography, substrate and tidal conditions. Soil water content and consolidation were measured using two sampling protocols: a) comparisons between modified and unmodified shores; and, b) comparisons with increasing lateral distance across the shore from the runnel edge. At one marsh, moisture levels were significantly higher at runnelled than at unrunnelled sites when tides filled the runnels, but this pattern was not found at the other marshes. Soil consolidation was greater at higher shore heights, but was not different between runnelled and unrunnelled shores. Measurements at different lateral distances from runnels demonstrated higher moisture levels and lower consolidation up to 5 m from the edge but not further away. Groups of marked Avicennia marina propagules were released at the three runnelled saltmarshes during flooding and non-flooding tidal events. Groups of propagules released within 10 m of a runnel were always transported significantly further from the starting position and further up the saltmarsh shore after both flooding and non-flooding tides than any other groups. In addition, the pattern of stranding on saltmarsh for significantly different groups was closely associated with the path of runnel construction so that propagules were located either in the runnel or in depressions linked to the runnel that had been isolated mosquito-breeding pools prior to runnelling. It is likely that altered physical soil conditions significantly affected the distribution and size structures of Salinator solida and Ophicardelus spp. snails recorded at the three saltmarshes. The interaction of tidal period and the presence of a runnel contributed to patterns with significant differences between runnelled and unrunnelled regions of the marsh. Generally, the runnel population of snails exhibited flood-like features even during non-flood periods. The distribution and size classes of snails did not differ with lateral distance from runnels. The burrow characteristics of the crab Helograpsus haswellianus were compared to increase the accuracy of estimating abundance from burrow counts. Including only those burrows which were obviously maintained by resident crabs significantly increased the confidence limits of estimating crab abundance using only burrow density counts. This method was applied to runnelled and unrunnelled sites to assess any changes in the density of burrows associated with the presence of runnels. Again, it is likely that physical soil conditions resulting from increased tidal frequency at the runnel did influence crab burrowing with fewer small burrows being found at the runnelled site, low on the shore. In addition, mid- and large-sized burrows tended to dominate close to the runnel edge. Site-specific soil characteristics may help to explain the lack of continuity in patterns associated with runnel effects on non-target saltmarsh resources. While the runnel may increase the soil water content of clayey substrates at some sites it could also result in de-watering of porous sandy soils at other shores. This was evident in the structure of the snail population and distribution of crab burrows which appeared to reflect altered soil physical characteristics associated with the runnel. Runnelling does affect non-target organisms in saltmarsh. However, the scale of impact was usually locally restricted (< 10 m from the runnel edge). The fact that patterns were not recorded at all sites suggests that the influence of runnels is variable and limited by substrate and some biological conditions. Given the efficiency and popularity of runnelling as a physical control method for reducing pest vector mosquito habitat, this study found no evidence to suggest that its use should be discontinued on any ecological basis measured.
Style APA, Harvard, Vancouver, ISO itp.
3

Breitfuss, Mark. "The Effects of Physical Habitat Modification for Mosquito Control, Runnelling, on Selected Non-Target Saltmarsh Resources". Thesis, Griffith University, 2003. http://hdl.handle.net/10072/367526.

Pełny tekst źródła
Streszczenie:
Runnelling is a popular method of physical habitat modification employed on saltmarshes to control pest mosquito populations. The runnelling method involves linking the tidal source to isolated mosquito breeding pools via shallow channels that enable slow water movement of low amplitude tides. Increased tidal flushing inhibits mosquito development. The range of organisms which inhabit saltmarsh are likely to be influenced by altered tidal conditions as they exhibit specific physicochemical requirements for feeding, burrowing or growth. The dynamic nature of saltmarsh may mean that changes to the tidal frequency of a particular region of the saltmarsh promotes extension of marine-like conditions. Because runnels increase the frequency of flooding tidal events in specific regions of the saltmarsh this study predicted that resulting changes would be evident in the physical conditions of saltmarsh substrate, in the transport of buoyant vegetative propagules, in the population characteristics of surface grazing snails and in the density and aperture of crab burrows after flooding and non-flooding tidal events. The physical impacts of runnelling were determined at three marshes which appeared similar in terms of topography, substrate and tidal conditions. Soil water content and consolidation were measured using two sampling protocols: a) comparisons between modified and unmodified shores; and, b) comparisons with increasing lateral distance across the shore from the runnel edge. At one marsh, moisture levels were significantly higher at runnelled than at unrunnelled sites when tides filled the runnels, but this pattern was not found at the other marshes. Soil consolidation was greater at higher shore heights, but was not different between runnelled and unrunnelled shores. Measurements at different lateral distances from runnels demonstrated higher moisture levels and lower consolidation up to 5 m from the edge but not further away. Groups of marked Avicennia marina propagules were released at the three runnelled saltmarshes during flooding and non-flooding tidal events. Groups of propagules released within 10 m of a runnel were always transported significantly further from the starting position and further up the saltmarsh shore after both flooding and non-flooding tides than any other groups. In addition, the pattern of stranding on saltmarsh for significantly different groups was closely associated with the path of runnel construction so that propagules were located either in the runnel or in depressions linked to the runnel that had been isolated mosquito-breeding pools prior to runnelling. It is likely that altered physical soil conditions significantly affected the distribution and size structures of Salinator solida and Ophicardelus spp. snails recorded at the three saltmarshes. The interaction of tidal period and the presence of a runnel contributed to patterns with significant differences between runnelled and unrunnelled regions of the marsh. Generally, the runnel population of snails exhibited flood-like features even during non-flood periods. The distribution and size classes of snails did not differ with lateral distance from runnels. The burrow characteristics of the crab Helograpsus haswellianus were compared to increase the accuracy of estimating abundance from burrow counts. Including only those burrows which were obviously maintained by resident crabs significantly increased the confidence limits of estimating crab abundance using only burrow density counts. This method was applied to runnelled and unrunnelled sites to assess any changes in the density of burrows associated with the presence of runnels. Again, it is likely that physical soil conditions resulting from increased tidal frequency at the runnel did influence crab burrowing with fewer small burrows being found at the runnelled site, low on the shore. In addition, mid- and large-sized burrows tended to dominate close to the runnel edge. Site-specific soil characteristics may help to explain the lack of continuity in patterns associated with runnel effects on non-target saltmarsh resources. While the runnel may increase the soil water content of clayey substrates at some sites it could also result in de-watering of porous sandy soils at other shores. This was evident in the structure of the snail population and distribution of crab burrows which appeared to reflect altered soil physical characteristics associated with the runnel. Runnelling does affect non-target organisms in saltmarsh. However, the scale of impact was usually locally restricted (< 10 m from the runnel edge). The fact that patterns were not recorded at all sites suggests that the influence of runnels is variable and limited by substrate and some biological conditions. Given the efficiency and popularity of runnelling as a physical control method for reducing pest vector mosquito habitat, this study found no evidence to suggest that its use should be discontinued on any ecological basis measured.
Thesis (PhD Doctorate)
Doctor of Philosophy (PhD)
Australian School of Environmental Studies
Full Text
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Runnelling"

1

Latchford, Jane A. The effects of runnelling: A technique for controlling mosquitoes in saltmarshes of southwestern Australia : a report prepared for Department of Health, Western Australia. [Murdoch, W.A.]: School of Biological and Environmental Science, Murdoch University, 2002.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii