Spis treści
Gotowa bibliografia na temat „RRNA Methyltransferase”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „RRNA Methyltransferase”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "RRNA Methyltransferase"
Corrêa, Laís L., Marta A. Witek, Natalia Zelinskaya, Renata C. Picão i Graeme L. Conn. "Heterologous Expression and Functional Characterization of the Exogenously Acquired Aminoglycoside Resistance Methyltransferases RmtD, RmtD2, and RmtG". Antimicrobial Agents and Chemotherapy 60, nr 1 (9.11.2015): 699–702. http://dx.doi.org/10.1128/aac.02482-15.
Pełny tekst źródłaSavic, Miloje, S. Sunita, Natalia Zelinskaya, Pooja M. Desai, Rachel Macmaster, Kellie Vinal i Graeme L. Conn. "30S Subunit-Dependent Activation of the Sorangium cellulosum So ce56 Aminoglycoside Resistance-Conferring 16S rRNA Methyltransferase Kmr". Antimicrobial Agents and Chemotherapy 59, nr 5 (2.03.2015): 2807–16. http://dx.doi.org/10.1128/aac.00056-15.
Pełny tekst źródłaNosrati, Meisam, Debayan Dey, Atousa Mehrani, Sarah E. Strassler, Natalia Zelinskaya, Eric D. Hoffer, Scott M. Stagg, Christine M. Dunham i Graeme L. Conn. "Functionally critical residues in the aminoglycoside resistance-associated methyltransferase RmtC play distinct roles in 30S substrate recognition". Journal of Biological Chemistry 294, nr 46 (8.10.2019): 17642–53. http://dx.doi.org/10.1074/jbc.ra119.011181.
Pełny tekst źródłaChen, Hao, Zhennan Shi, Jiaojiao Guo, Kao-jung Chang, Qianqian Chen, Cong-Hui Yao, Marcia C. Haigis i Yang Shi. "The human mitochondrial 12S rRNA m4C methyltransferase METTL15 is required for mitochondrial function". Journal of Biological Chemistry 295, nr 25 (5.05.2020): 8505–13. http://dx.doi.org/10.1074/jbc.ra119.012127.
Pełny tekst źródłaRowe, Sebastian J., Ryan J. Mecaskey, Mohamed Nasef, Rachel C. Talton, Rory E. Sharkey, Joshua C. Halliday i Jack A. Dunkle. "Shared requirements for key residues in the antibiotic resistance enzymes ErmC and ErmE suggest a common mode of RNA recognition". Journal of Biological Chemistry 295, nr 51 (5.10.2020): 17476–85. http://dx.doi.org/10.1074/jbc.ra120.014280.
Pełny tekst źródłaMcGann, Patrick, Sarah Chahine, Darius Okafor, Ana C. Ong, Rosslyn Maybank, Yoon I. Kwak, Kerry Wilson, Michael Zapor, Emil Lesho i Mary Hinkle. "Detecting 16S rRNA Methyltransferases in Enterobacteriaceae by Use of Arbekacin". Journal of Clinical Microbiology 54, nr 1 (4.11.2015): 208–11. http://dx.doi.org/10.1128/jcm.02642-15.
Pełny tekst źródłavan Tran, Nhan, Felix G. M. Ernst, Ben R. Hawley, Christiane Zorbas, Nathalie Ulryck, Philipp Hackert, Katherine E. Bohnsack i in. "The human 18S rRNA m6A methyltransferase METTL5 is stabilized by TRMT112". Nucleic Acids Research 47, nr 15 (22.07.2019): 7719–33. http://dx.doi.org/10.1093/nar/gkz619.
Pełny tekst źródłaWhite, Joshua, Zhihua Li, Richa Sardana, Janusz M. Bujnicki, Edward M. Marcotte i Arlen W. Johnson. "Bud23 Methylates G1575 of 18S rRNA and Is Required for Efficient Nuclear Export of Pre-40S Subunits". Molecular and Cellular Biology 28, nr 10 (10.03.2008): 3151–61. http://dx.doi.org/10.1128/mcb.01674-07.
Pełny tekst źródłaRuszkowska, Agnieszka. "METTL16, Methyltransferase-Like Protein 16: Current Insights into Structure and Function". International Journal of Molecular Sciences 22, nr 4 (22.02.2021): 2176. http://dx.doi.org/10.3390/ijms22042176.
Pełny tekst źródłaL. Aishwarya, K. V., P. V. Geetha, M. Shanthi i S. Uma. "Co occurrence of two 16S rRNA methyltrasferases along with NDM and OXA 48 like carbapenamases on a single plasmid in Klebsiella pneumoniae". Journal of Laboratory Physicians 11, nr 04 (październik 2019): 305–11. http://dx.doi.org/10.4103/jlp.jlp_59_19.
Pełny tekst źródłaRozprawy doktorskie na temat "RRNA Methyltransferase"
Zarubica, Tamara. "SPECIFICITY DETERMINANTS OF ArmA, A RIBOSOMAL RNA METHYLTRANSFERASE THAT CONFERS ANTIBIOTIC RESISTANCE". VCU Scholars Compass, 2010. http://scholarscompass.vcu.edu/etd/2273.
Pełny tekst źródłaKshetri, Man B. "N-TERMINAL DOMAIN OF rRNA METHYLTRANSFERASE ENZYME RsmC IS IMPORTANT FOR ITS BINDING TO RNA AND RNA CHAPERON ACTIVITY". Kent State University Honors College / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ksuhonors1621007414429417.
Pełny tekst źródłaTreede, Irina. "Aufklärung der Funktion von zwei rRNA-Methyltransferasen und Untersuchungen zur Eurekanat-Biosynthese in Streptomyces viridochromogenes Tü57". [S.l.] : [s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=973266686.
Pełny tekst źródłaPunekar, Avinash S. "Ribosomal RNA Modification Enzymes : Structural and functional studies of two methyltransferases for 23S rRNA modification in Escherichia coli". Doctoral thesis, Uppsala universitet, Struktur- och molekylärbiologi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-212394.
Pełny tekst źródłaSharma, Sunny [Verfasser], Karl-Dieter [Akademischer Betreuer] Entain, Jens [Akademischer Betreuer] Wöhnert, Heinz Dieter [Akademischer Betreuer] Osiewacz i Micheala [Akademischer Betreuer] Müller-McNicoll. "Identification of novel base methyltransferases of the 25S rRNA in Saccharomyces cerevisiae / Sunny Sharma. Gutachter: Karl-Dieter Entain ; Jens Wöhnert ; Heinz Dieter Osiewacz ; Micheala Müller-McNicoll". Frankfurt am Main : Univ.-Bibliothek Frankfurt am Main, 2014. http://d-nb.info/1062604032/34.
Pełny tekst źródłaSchillewaert, Stéphanie. "Etude de la maturation et de l'assemblage du ribosome eucaryote: caractérisation fonctionnelle de nouveaux facteurs trans-". Doctoral thesis, Universite Libre de Bruxelles, 2011. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209826.
Pełny tekst źródłaParmi ces facteurs de synthèse, nous avons caractérisé en détail, chez la levure et chez l’homme, la protéine Las1 impliquée dans la maturation des deux extrémités de l’ITS2, séquence qui sépare les ARNr 5.8S et 25S/28S. Chez la levure, en absence de la protéine Las1, les analyses de profils de polysomes révèlent un déficit de sous-unité 60S et l’apparition d’« halfmères ». Les techniques de purification d’affinité et de gradient de sédimentation nous indiquent que Las1 est associée aux pré-ribosomes 60S et qu’elle interagit avec de nombreux facteurs de synthèse de la petite, de la grande sous-unité ou des deux. De plus, Las1 copurifie avec des pré-ribosomes qui contiennent aussi les exoribonucléases 5’-3’ Rat1/Rai1 et Xrn1. Rai1 coordonne la maturation aux deux extrémités de l’ARNr 5.8S. Nous suggérons que Las1 appartient à un macrocomplexe connectant spatialement des sites de clivages éloignés sur la séquence primaire du pré-ARNr qui seraient rapprochés suite au reploiement de l’ITS2.
Un autre aspect de ce travail de thèse consiste en l’étude de l’assemblage des particules ribonucléoprotéiques et plus spécifiquement du pré-ribosome et des sous-unités ribosomiques eucaryotes. Nous avons utilisé la technique d’immunoprécipitation de chromatine (Ch-IP) pour caractériser l’assemblage d’une structure appelée le « SSU processome ». Celui-ci correspond à un pré-ribosome en formation ainsi que l’assemblage des protéines ribosomiques sur l’ARNr naissant.
Enfin, nous avons étudié le rôle d’une plateforme d’activation de méthyltransférases d’ARN et de protéines, la protéine Trm112 dans la ribogenèse. Nous avons montré que chez la levure, Trm112 est impliquée dans la synthèse du ribosome et dans la progression de la mitose. En absence de cette protéine, les pré-ARNr sont dégradés par un mécanisme de surveillance. Trm112 copurifie avec plusieurs facteurs de synthèse du ribosome dont la méthyltransférase Bud23, impliquée dans la modification post-transcriptionnelle de l’ARNr18S. Trm112 est requise pour cette méthylation et nous postulons que la protéine Bud23 est incapable de se lier aux pré-ribosomes en l’absence de Trm112.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Hang, Pei Chun. "Investigations into Streptomyces azureus Thiostrepton-resistance rRNA Methyltransferase and its Cognate Antibiotic". Thesis, 2008. http://hdl.handle.net/10012/4143.
Pełny tekst źródłaKovalic, David Karel. "Methylation of minimalist 23S rRNA sequences in vitro by ErmSF (TlrA) N-methyltransferase". 1997. http://catalog.hathitrust.org/api/volumes/oclc/40100371.html.
Pełny tekst źródłaTypescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 168-191).
Treede, Irina [Verfasser]. "Aufklärung der Funktion von zwei rRNA-Methyltransferasen und Untersuchungen zur Eurekanat-Biosynthese in Streptomyces viridochromogenes Tü57 / vorgelegt von Irina Treede". 2004. http://d-nb.info/973266686/34.
Pełny tekst źródłaBhattacharyya, Souvik. "Fidelity Of Translation Initiation In E. coli : Roles Of The Transcription-recycling Factor RapA, 23S rRNA Modifications, And Evolutionary Origin Of Initiator tRNA". Thesis, 2016. http://etd.iisc.ernet.in/handle/2005/2574.
Pełny tekst źródłaTranslation initiation is a rate limiting step during protein biosynthesis. Initiation occurs by formation of an initiation complex comprising 30S subunit of ribosome, mRNA, initiator tRNA, and initiation factors. The initiator tRNA has a specialized function of binding to ribosomal P site whereas all the other tRNAs are selected in the ribosomal A site. The presence of a highly conserved 3 consecutive G-C base pairs in the anticodon stem of the initiator tRNA has been shown to be responsible for its P-site targeting. The exact molecular mechanism involved in the P-site targeting of the initiator tRNA is still unclear and focus of our study. Using genetic methods, we obtained mutant E. coli strains where initiator tRNA mutants lacking the characteristic 3-GC base pairs can also initiate translation. One such mutant strain, A30, was selected for this study. Using standard molecular genetic tools, the mutation was mapped and identified to be a mutation in a transcription remodeling factor, RapA (A511V). RapA is a transcription recycling factor and it displaces S1 when it performs its transcription recycling activity. We found this mutation to cause an increase in the S1-depleted ribosomes leading to decreased fidelity of translation initiation as the mutant RapA inefficiently displaces S1 from RNA polymerase complex. The mutation in the RapA was also found to cause changes in the transcriptome which leads to downregulation of major genes important for methionine and purine metabolism. Using mass spectrometric analysis, we identified deficiencies of methionine and adenine in the strain carrying mutant RapA. Our lab had previously reported that methionine and S-adenosyl methionine deficiency cause deficiency of methylations in ribosome which in turn decreases the fidelity of protein synthesis initiation. We used strains deleted for two newly identified methyltransferases, namely RlmH and RlmI, for our study and these strains also showed decreased fidelity of initiation. RlmH and RlmI methylate 1915 and 1962 positions of 23S rRNA respectively. We found that deletion of these methyltransferases also caused defects in ribosome biogenesis and compromised activity of ribosome recycling factor. We constructed phylogenetic trees of the initiator tRNA from 158 species which distinctly assembled into three domains of life. We also constructed trees using the minihelix or the whole sequence of species specific tRNAs, and iterated our analysis on 50 eubacterial species. We identified tRNAPro, tRNAGlu, or tRNAThr (but surprisingly not elongator tRNAMet) as probable ancestors of tRNAi. We then determined the factors imposing selection of methionine as the initiating amino acid. Overall frequency of occurrence of methionine, whose metabolic cost of synthesis is the highest among all amino acids, remains almost unchanged across the three domains of life. Our results indicate that methionine selection, as the initiating amino acid was possibly a consequence of the evolution of one-carbon metabolism, which plays an important role in regulating translation initiation. In conclusion, the current study reveals the importance of methylations in ribosome biogenesis and fidelity of translation initiation. It also strongly suggests a co-evolution of the metabolism and translation apparatus giving adaptive advantage to the cells where presence of methionine in the environment can be a signal to initiate translation with methionine initiator tRNA.
Części książek na temat "RRNA Methyltransferase"
Schomburg, Dietmar, i Dörte Stephan. "rRNA (adenine-N6-)-methyltransferase". W Enzyme Handbook 11, 211–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61030-1_46.
Pełny tekst źródłaSchomburg, Dietmar, i Dörte Stephan. "rRNA (guanine-N1-)-methyltransferase". W Enzyme Handbook 11, 223–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61030-1_49.
Pełny tekst źródłaSchomburg, Dietmar, i Dörte Stephan. "rRNA (guanine-N2-)-methyltransferase". W Enzyme Handbook 11, 227–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61030-1_50.
Pełny tekst źródłaSchomburg, Dietmar, i Dörte Stephan. "rRNA (adenosine-2′-O-)-methyltransferase". W Enzyme Handbook 11, 283–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61030-1_63.
Pełny tekst źródłaSchomburg, Dietmar, i Ida Schomburg. "16S rRNA (guanine1207-N2)-methyltransferase 2.1.1.172". W Class 2–3.2 Transferases, Hydrolases, 41–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36240-8_10.
Pełny tekst źródłaSchomburg, Dietmar, i Ida Schomburg. "23S rRNA (guanine2445-N2)-methyltransferase 2.1.1.173". W Class 2–3.2 Transferases, Hydrolases, 45–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36240-8_11.
Pełny tekst źródłaSchomburg, Dietmar, i Ida Schomburg. "23S rRNA (guanine1835-N2)-methyltransferase 2.1.1.174". W Class 2–3.2 Transferases, Hydrolases, 47–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36240-8_12.
Pełny tekst źródłaSchomburg, Dietmar, i Ida Schomburg. "16S rRNA (cytosine967-C5)-methyltransferase 2.1.1.176". W Class 2–3.2 Transferases, Hydrolases, 53–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36240-8_14.
Pełny tekst źródłaSchomburg, Dietmar, i Ida Schomburg. "23S rRNA (pseudouridine1915-N3)-methyltransferase 2.1.1.177". W Class 2–3.2 Transferases, Hydrolases, 56–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36240-8_15.
Pełny tekst źródłaSchomburg, Dietmar, i Ida Schomburg. "16S rRNA (cytosine1407-C5)-methyltransferase 2.1.1.178". W Class 2–3.2 Transferases, Hydrolases, 58–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36240-8_16.
Pełny tekst źródła