Artykuły w czasopismach na temat „Rotary-wing UAV”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Rotary-wing UAV”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Krishnakumar, R., K. Senthil Kumar i T. Anand. "Design and Development of Vertical Takeoff and Horizontal Transition Mini Unmanned Aerial Vehicle". Advanced Materials Research 1016 (sierpień 2014): 436–40. http://dx.doi.org/10.4028/www.scientific.net/amr.1016.436.
Pełny tekst źródłaPeng, Kemao. "Autonomous Mission Management Based Nonlinear Flight Control Design for a Class of Hybrid Unmanned Aerial Vehicles". Guidance, Navigation and Control 01, nr 02 (czerwiec 2021): 2150009. http://dx.doi.org/10.1142/s2737480721500096.
Pełny tekst źródłaÜNAL, Beytullah, Tamer SAVAŞ i Işıl YAZAR. "DESIGN OF A SPRAYING QUADCOPTER". First Issue of 2019, nr 2019.01 (18.12.2019): 3–9. http://dx.doi.org/10.23890/ijast.2019.0101.
Pełny tekst źródłaGonzalez, José Cerdeira, Roberto Ortiz Garrido i Antonio Eduardo Carrilho da Cunha. "Rotary-Wing UAV Mission Planning Aided by Supervisory Control". IFAC Proceedings Volumes 43, nr 12 (2010): 324–30. http://dx.doi.org/10.3182/20100830-3-de-4013.00054.
Pełny tekst źródłaZhan, Cheng, i Renjie Huang. "Energy Efficient Adaptive Video Streaming With Rotary-Wing UAV". IEEE Transactions on Vehicular Technology 69, nr 7 (lipiec 2020): 8040–44. http://dx.doi.org/10.1109/tvt.2020.2993303.
Pełny tekst źródłaAhmed, Bilal, Hemanshu R. Pota i Matt Garratt. "Flight control of a rotary wing UAV using backstepping". International Journal of Robust and Nonlinear Control 20, nr 6 (12.05.2009): 639–58. http://dx.doi.org/10.1002/rnc.1458.
Pełny tekst źródłaZeng, Yong, Jie Xu i Rui Zhang. "Energy Minimization for Wireless Communication With Rotary-Wing UAV". IEEE Transactions on Wireless Communications 18, nr 4 (kwiecień 2019): 2329–45. http://dx.doi.org/10.1109/twc.2019.2902559.
Pełny tekst źródłaYan, Hua, Yunfei Chen i Shuang-Hua Yang. "New Energy Consumption Model for Rotary-Wing UAV Propulsion". IEEE Wireless Communications Letters 10, nr 9 (wrzesień 2021): 2009–12. http://dx.doi.org/10.1109/lwc.2021.3090772.
Pełny tekst źródłaGuo, Huiqiang, Mingzhe Li, Pengfei Sun, Changfeng Zhao, Wenjie Zuo i Xiaoying Li. "Lightweight and maintainable rotary-wing UAV frame from configurable design to detailed design". Advances in Mechanical Engineering 13, nr 7 (lipiec 2021): 168781402110349. http://dx.doi.org/10.1177/16878140211034999.
Pełny tekst źródłaKumar, K. Senthil, i A. Mohamed Rasheed. "Development of Rotary Wing Mini UAS for Civilian Applications". Unmanned Systems 01, nr 02 (październik 2013): 247–58. http://dx.doi.org/10.1142/s2301385013400050.
Pełny tekst źródłaWang, Fei, Peidong Liu, Shiyu Zhao, Ben M. Chen, Swee King Phang, Shupeng Lai, Tao Pang, Biao Wang, Chenxiao Cai i Tong H. Lee. "Development of an Unmanned Helicopter for Vertical Replenishment". Unmanned Systems 03, nr 01 (styczeń 2015): 63–87. http://dx.doi.org/10.1142/s2301385015500053.
Pełny tekst źródłaMartawireja, Abdur Rohman Harits, i Hadi Supriyanto. "Penentuan Lintasan Pergerakan Quadcopter Berbasis GPS (Global Positioning System)". Jurnal Teknologi dan Rekayasa Manufaktur 1, nr 2 (23.12.2019): 1–14. http://dx.doi.org/10.48182/jtrm.v1i2.7.
Pełny tekst źródłaKong, Changduk, Jongha Park i Myoungcheol Kang. "A Study on Transient Performance Characteristics of the Canard Rotor Wing Type Unmanned Aerial Vehicle Propulsion System During Flight Mode Transition". Journal of Engineering for Gas Turbines and Power 128, nr 3 (28.09.2005): 573–78. http://dx.doi.org/10.1115/1.2135821.
Pełny tekst źródłaAhmed, Bilal, i Hemanshu R. Pota. "Flight Control of a Rotary wing UAV including Flapping Dynamics". IFAC Proceedings Volumes 44, nr 1 (styczeń 2011): 10373–78. http://dx.doi.org/10.3182/20110828-6-it-1002.01021.
Pełny tekst źródłaXie, Hui, Alan F. Lynch i Martin Jagersand. "Dynamic IBVS of a rotary wing UAV using line features". Robotica 34, nr 9 (9.12.2014): 2009–26. http://dx.doi.org/10.1017/s0263574714002707.
Pełny tekst źródłaSerrenho, Felipe Gonçalves, José Antonio Apolinário, António Luiz Lopes Ramos i Rigel Procópio Fernandes. "Gunshot Airborne Surveillance with Rotary Wing UAV-Embedded Microphone Array". Sensors 19, nr 19 (1.10.2019): 4271. http://dx.doi.org/10.3390/s19194271.
Pełny tekst źródłaAlarcón, Francisco, Manuel García, Ivan Maza, Antidio Viguria i Aníbal Ollero. "A Precise and GNSS-Free Landing System on Moving Platforms for Rotary-Wing UAVs". Sensors 19, nr 4 (20.02.2019): 886. http://dx.doi.org/10.3390/s19040886.
Pełny tekst źródłaD., Dr Sivaganesan. "Wireless UAV Rotary Wing Communication with Ground Nodes Using Successive Convex Approximation and Energy Saving Mode". IRO Journal on Sustainable Wireless Systems 2, nr 2 (26.05.2020): 100–107. http://dx.doi.org/10.36548/jsws.2020.2.006.
Pełny tekst źródłaWang, Zhen, Miaowen Wen, Shuping Dang, Lisu Yu i Yuhao Wang. "Trajectory design and resource allocation for UAV energy minimization in a rotary-wing UAV-enabled WPCN". Alexandria Engineering Journal 60, nr 1 (luty 2021): 1787–96. http://dx.doi.org/10.1016/j.aej.2020.11.027.
Pełny tekst źródłaUnal, Beytullah, Tamer Savas i Isil Yazar. "Design of a Pesticide Spraying Quadcopter". International Journal of Aviation Science and Technology vm01, is01 (10.09.2020): 9–13. http://dx.doi.org/10.23890/ijast.vm01is01.0102.
Pełny tekst źródłaMat, Amir Rasydan, Liew Mun How, Omar Kassim Ariff, M. Amzari M. Zhahir i Ramly Mohd Ajir. "Autonomous Aerial Hard Docking of Fixed and Rotary Wing UAVs: Task Assessment and Solution Architecture". Applied Mechanics and Materials 629 (październik 2014): 176–81. http://dx.doi.org/10.4028/www.scientific.net/amm.629.176.
Pełny tekst źródłaPark, Jongho, i Jaehyun Yoo. "Indoor Mapping Guidance Algorithm of Rotary-Wing UAV Including Dead-End Situations". Sensors 19, nr 22 (7.11.2019): 4854. http://dx.doi.org/10.3390/s19224854.
Pełny tekst źródłaYe, Han-Ting, Xin Kang, Jingon Joung i Ying-Chang Liang. "Optimization for Full-Duplex Rotary-Wing UAV-Enabled Wireless-Powered IoT Networks". IEEE Transactions on Wireless Communications 19, nr 7 (lipiec 2020): 5057–72. http://dx.doi.org/10.1109/twc.2020.2989302.
Pełny tekst źródłaWu, Fahui, Dingcheng Yang, Lin Xiao i Laurie Cuthbert. "Energy Consumption and Completion Time Tradeoff in Rotary-Wing UAV Enabled WPCN". IEEE Access 7 (2019): 79617–35. http://dx.doi.org/10.1109/access.2019.2922651.
Pełny tekst źródłaPark, Joon-Kyu, i Min-Gyu Kim. "Applicability Verification of Rotary Wing UAV for Rapid Construction of Geospatial Information". Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology 6, nr 4 (30.04.2016): 73–80. http://dx.doi.org/10.14257/ajmahs.2016.04.45.
Pełny tekst źródłaSaggiani, G. M., i B. Teodorani. "Rotary wing UAV potential applications: an analytical study through a matrix method". Aircraft Engineering and Aerospace Technology 76, nr 1 (luty 2004): 6–14. http://dx.doi.org/10.1108/00022660410514955.
Pełny tekst źródłaZhan, Cheng, i Hong Lai. "Energy Minimization in Internet-of-Things System Based on Rotary-Wing UAV". IEEE Wireless Communications Letters 8, nr 5 (październik 2019): 1341–44. http://dx.doi.org/10.1109/lwc.2019.2916549.
Pełny tekst źródłaUcgun, Hakan, Ugur Yuzgec i Cuneyt Bayilmis. "A review on applications of rotary-wing unmanned aerial vehicle charging stations". International Journal of Advanced Robotic Systems 18, nr 3 (1.05.2021): 172988142110158. http://dx.doi.org/10.1177/17298814211015863.
Pełny tekst źródłaKang, Keeryun, i J. V. R. Prasad. "Development and Flight Test Evaluations of an Autonomous Obstacle Avoidance System for a Rotary-Wing UAV". Unmanned Systems 01, nr 01 (20.06.2013): 3–19. http://dx.doi.org/10.1142/s2301385013500015.
Pełny tekst źródłaHoang Dinh, Thinh, i Hieu Le Thi Hong. "Detection and localization of helipad in autonomous UAV landing: a coupled visual-inertial approach with artificial intelligence". Transport and Communications Science Journal 71, nr 7 (30.09.2020): 828–39. http://dx.doi.org/10.47869/tcsj.71.7.8.
Pełny tekst źródłaHoang Dinh, Thinh, i Hieu Le Thi Hong. "Detection and localization of helipad in autonomous UAV landing: a coupled visual-inertial approach with artificial intelligence". Transport and Communications Science Journal 71, nr 7 (30.09.2020): 828–39. http://dx.doi.org/10.25073/tcsj.71.7.8.
Pełny tekst źródłaKimball, Sytske K., Carlos J. Montalvo i Madhuri S. Mulekar. "Assessing iMET-XQ Performance and Optimal Placement on a Small Off-the-Shelf, Rotary-Wing UAV, as a Function of Atmospheric Conditions". Atmosphere 11, nr 6 (20.06.2020): 660. http://dx.doi.org/10.3390/atmos11060660.
Pełny tekst źródłaAhmed, Bilal, i Hemanshu R. Pota. "Dynamic Compensation for Control of a Rotary wing UAV Using Positive Position Feedback". Journal of Intelligent & Robotic Systems 61, nr 1-4 (27.10.2010): 43–56. http://dx.doi.org/10.1007/s10846-010-9487-7.
Pełny tekst źródłaPrasetyo, Mustafa Dwi, i Mohamad Yamin. "PENGUJIAN WAHANA UNMANNED AERIAL VEHICLE (UAV) AMPHI-FLY EVO 1.0 UNTUK MISI PENCARIAN DAN PENYELAMATAN". Jurnal Ilmiah Teknologi dan Rekayasa 23, nr 3 (2018): 220–32. http://dx.doi.org/10.35760/tr.2018.v23i3.2471.
Pełny tekst źródłaKim, Min-Seong, i Byung Hyuk Kwon. "Estimation of Sensible Heat Flux and Atmospheric Boundary Layer Height Using an Unmanned Aerial Vehicle". Atmosphere 10, nr 7 (30.06.2019): 363. http://dx.doi.org/10.3390/atmos10070363.
Pełny tekst źródłaKwak, Kyung-Hwan, Seung-Hyeop Lee, A.-Young Kim, Kwon-Chan Park, Sang-Eun Lee, Beom-Soon Han, Joohyun Lee i Young-San Park. "Daytime Evolution of Lower Atmospheric Boundary Layer Structure: Comparative Observations between a 307-m Meteorological Tower and a Rotary-Wing UAV". Atmosphere 11, nr 11 (22.10.2020): 1142. http://dx.doi.org/10.3390/atmos11111142.
Pełny tekst źródłaHidayat, Husnul, i Bangun Muljo Sukojo. "Analysis of Horizontal Accuracy for Large Scale Rural Mapping Using Rotary Wing UAV Image". IOP Conference Series: Earth and Environmental Science 98 (grudzień 2017): 012052. http://dx.doi.org/10.1088/1755-1315/98/1/012052.
Pełny tekst źródłaSamal, Mahendra Kumar, Sreenatha Anavatti, Tapabrata Ray i Matthew Garratt. "A computationally efficient approach for NN based system identification of a rotary wing UAV". International Journal of Control, Automation and Systems 8, nr 4 (sierpień 2010): 727–34. http://dx.doi.org/10.1007/s12555-010-0403-5.
Pełny tekst źródłaSong, Bonggeun, i Kyunghun Park. "Detection of Aquatic Plants Using Multispectral UAV Imagery and Vegetation Index". Remote Sensing 12, nr 3 (25.01.2020): 387. http://dx.doi.org/10.3390/rs12030387.
Pełny tekst źródłaXu, Yu, Wenda Sun i Ping Li. "A Miniature Integrated Navigation System for Rotary-Wing Unmanned Aerial Vehicles". International Journal of Aerospace Engineering 2014 (2014): 1–13. http://dx.doi.org/10.1155/2014/748940.
Pełny tekst źródłaTeske, Milton E., Daniel A. Wachspress i Harold W. Thistle. "Prediction of Aerial Spray Release from UAVs". Transactions of the ASABE 61, nr 3 (2018): 909–18. http://dx.doi.org/10.13031/trans.12701.
Pełny tekst źródłaWang, Zhen, Wenjun Xu, Dingcheng Yang i Jiaru Lin. "Joint Trajectory Optimization and User Scheduling for Rotary-Wing UAV-Enabled Wireless Powered Communication Networks". IEEE Access 7 (2019): 181369–80. http://dx.doi.org/10.1109/access.2019.2959637.
Pełny tekst źródłaQi, Juntong, Dalei Song, Hong Shang, Nianfa Wang, Chunsheng Hua, Chong Wu, Xin Qi i Jianda Han. "Search and Rescue Rotary-Wing UAV and Its Application to the Lushan Ms 7.0 Earthquake". Journal of Field Robotics 33, nr 3 (6.07.2015): 290–321. http://dx.doi.org/10.1002/rob.21615.
Pełny tekst źródłaWanngoen, Saetunand, Saengphet i Tantrairatn. "Angle of Attack Sensor for Small Fixed-Wing Unmanned Aerial Vehicles". Proceedings 39, nr 1 (7.01.2020): 19. http://dx.doi.org/10.3390/proceedings2019039019.
Pełny tekst źródłaRudys, Saulius, Andrius Laučys, Dainius Udris, Raimondas Pomarnacki i Domantas Bručas. "Functionality Investigation of the UAV Arranged FMCW Solid-State Marine Radar". Journal of Marine Science and Engineering 9, nr 8 (18.08.2021): 887. http://dx.doi.org/10.3390/jmse9080887.
Pełny tekst źródłavon Eichel-Streiber, Johannes, Christoph Weber, Jesús Rodrigo-Comino i Jens Altenburg. "Controller for a Low-Altitude Fixed-Wing UAV on an Embedded System to Assess Specific Environmental Conditions". International Journal of Aerospace Engineering 2020 (16.06.2020): 1–10. http://dx.doi.org/10.1155/2020/1360702.
Pełny tekst źródłaPádua, Luís, Pedro Marques, Jonáš Hruška, Telmo Adão, Emanuel Peres, Raul Morais i Joaquim Sousa. "Multi-Temporal Vineyard Monitoring through UAV-Based RGB Imagery". Remote Sensing 10, nr 12 (29.11.2018): 1907. http://dx.doi.org/10.3390/rs10121907.
Pełny tekst źródłaDalwadi, Nihal, Dipankar Deb, Mangal Kothari i Stepan Ozana. "Disturbance Observer-Based Backstepping Control of Tail-Sitter UAVs". Actuators 10, nr 6 (3.06.2021): 119. http://dx.doi.org/10.3390/act10060119.
Pełny tekst źródłaJung, Yeondeuk, i Hyungsik Choi. "Actuator Mixer Design in Rotary-Wing Mode Based on Convex Optimization Technique for Electric VTOL UAV". Journal of the Korean Society for Aeronautical & Space Sciences 48, nr 9 (30.09.2020): 691–701. http://dx.doi.org/10.5139/jksas.2020.48.9.691.
Pełny tekst źródłaKAWAKAMI, Kohei, Kenji NISHIGAKI, Shinichiro NISHIDA, Kazunori SAKURAMA i Masaharu NISHIMURA. "719 Attitude stabilization on yaw axis of a rotary wing UAV with stators in the downwash". Proceedings of Conference of Chugoku-Shikoku Branch 2014.52 (2014): _719–1_—_719–3_. http://dx.doi.org/10.1299/jsmecs.2014.52._719-1_.
Pełny tekst źródła