Gotowa bibliografia na temat „Rossby waves”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Rossby waves”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Rossby waves"
Knessl, Charles, i Joseph B. Keller. "Rossby Waves". Studies in Applied Mathematics 94, nr 4 (maj 1995): 359–76. http://dx.doi.org/10.1002/sapm1995944359.
Pełny tekst źródłaMüller, Detlev. "Trapped Rossby waves". Physical Review E 61, nr 2 (1.02.2000): 1468–85. http://dx.doi.org/10.1103/physreve.61.1468.
Pełny tekst źródłaCheverry, Christophe, Isabelle Gallagher, Thierry Paul i Laure Saint-Raymond. "Trapping Rossby waves". Comptes Rendus Mathematique 347, nr 15-16 (sierpień 2009): 879–84. http://dx.doi.org/10.1016/j.crma.2009.05.007.
Pełny tekst źródłaBiancofiore, L., i F. Gallaire. "Counterpropagating Rossby waves in confined plane wakes". Physics of Fluids 24, nr 7 (lipiec 2012): 074102. http://dx.doi.org/10.1063/1.4729617.
Pełny tekst źródłaAvalos-Zuniga, R., F. Plunian i K. H. Rädler. "Rossby waves andα-effect". Geophysical & Astrophysical Fluid Dynamics 103, nr 5 (październik 2009): 375–96. http://dx.doi.org/10.1080/03091920903006099.
Pełny tekst źródłaMiles, John. "Resonantly Forced Rossby Waves". Journal of Physical Oceanography 15, nr 4 (kwiecień 1985): 467–74. http://dx.doi.org/10.1175/1520-0485(1985)015<0467:rfrw>2.0.co;2.
Pełny tekst źródłaFedotova, Maria, Dmitry Klimachkov i Arakel Petrosyan. "Resonant interactions of magneto-Poincaré and magneto-Rossby waves in quasi-two-dimensional rotating astrophysical plasma". Monthly Notices of the Royal Astronomical Society 509, nr 1 (14.10.2021): 314–26. http://dx.doi.org/10.1093/mnras/stab2957.
Pełny tekst źródłaSong, Jian, i ShaoXia Liu. "The barotropic Rossby waves with topography on the earth’s δ-surface". International Journal of Nonlinear Sciences and Numerical Simulation 21, nr 7-8 (18.11.2020): 781–88. http://dx.doi.org/10.1515/ijnsns-2019-0178.
Pełny tekst źródłaDikpati, Mausumi, Peter A. Gilman, Gustavo A. Guerrero, Alexander G. Kosovichev, Scott W. McIntosh, Katepalli R. Sreenivasan, Jörn Warnecke i Teimuraz V. Zaqarashvili. "Simulating Solar Near-surface Rossby Waves by Inverse Cascade from Supergranule Energy". Astrophysical Journal 931, nr 2 (1.06.2022): 117. http://dx.doi.org/10.3847/1538-4357/ac674b.
Pełny tekst źródłaKALADZE, T. D., D. J. WU, O. A. POKHOTELOV, R. Z. SAGDEEV, L. STENFLO i P. K. SHUKLA. "Rossby-wave driven zonal flows in the ionospheric E-layer". Journal of Plasma Physics 73, nr 1 (luty 2007): 131–40. http://dx.doi.org/10.1017/s0022377806004351.
Pełny tekst źródłaRozprawy doktorskie na temat "Rossby waves"
Cotto, Amaryllis. "Intermittently Forced Vortex Rossby Waves". FIU Digital Commons, 2012. http://digitalcommons.fiu.edu/etd/553.
Pełny tekst źródłaProehl, Jeffrey A. "Equatorial wave-mean flow interaction : the long Rossby waves /". Thesis, Connect to this title online; UW restricted, 1988. http://hdl.handle.net/1773/10960.
Pełny tekst źródłaMurphy, Darryl Guy. "Rossby waves in the Southern Ocean". Thesis, University of Exeter, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303178.
Pełny tekst źródłaWood, R. G. "Rossby waves in mid-latitude oceans". Thesis, University of Essex, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.379474.
Pełny tekst źródłaKovalam, Sujata. "MF radar observations of tides and planetary waves". Title page, contents and abstract only, 2000. http://web4.library.adelaide.edu.au/theses/09PH/09phk878.pdf.
Pełny tekst źródłaFyfe, John. "A barotropic stability study of free and forced planetary waves /". Thesis, McGill University, 1987. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=75433.
Pełny tekst źródłaThe frequencies of all infinitesimal perturbations to the equilibrium flows are determined numerically as a function of the flow parameters. The results are interpreted using a truncated spectral model and related to those of previous studies with infinite $ beta$-planes. In contrast to some earlier analytical studies we find that unstable long waves $(L sb{x}$ $>$ $L sb{y})$ exist under superresonant conditions. We also report on the existence of an interesting travelling topographic instability.
The linear instability of a weakly non-zonal flow is investigated numerically and analytically (via WKB theory). The theory reproduces the qualitative nature of the numerically-determined fastest-growing mode.
Nonlinear integrations, involving many degrees of freedom, reveal that initially-infinitesimal disturbances may grow explosively to finite-amplitude. The longer-term integrations are interpreted using a statistical mechanical model.
Giannitsis, Constantine 1971. "Non-linear saturation of vertically propagating Rossby waves". Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/53043.
Pełny tekst źródłaIncludes bibliographical references (p. 203-208).
Linear quasi-geostrophic theory predicts an exponential amplitude increase with height for Rossby waves propagating vertically through a stratified atmosphere, as a result of wave activity density conservation. At the same time layer-wise conservation of potential enstrophy constrains wave amplitudes, given the limited amount of potential enstrophy available in the initial mean flow. A break down of linear theory is thus expected above a certain critical wave amplitude, raising the question of how the non-linear flow reacts to limit the vertical penetration of waves. Keeping in mind the potential importance for the dynamics of the winter stratosphere, where strong wave penetration and amplitude growth are often observed, the issue of wave saturation in a non-linear flow is examined in a generally abstract context, through a variety of simple model studies. We thus consider the cases of a topographically forced barotropic beta plane channel model, of vertical propagation through a three-dimensional beta plane channel model, and of a polar coordinate model with realistic basic state and geometry. In the barotropic model transient wave growth is forced through the use of bottom topography and the deviations of the non-linear flow evolution from the predictions of both a linear and a quasi-linear analytical solution are examined for strong topographic anomalies. The growth of the forced wave is found to decelerate the zonal mean flow which in turn reduces the topographic forcing. Wave-mean flow interactions are thus found to be sufficient in leading to saturation of the eddy amplitudes. Interestingly it is the formation of zonal mean easterlies, rather than the depletion of mean available potential enstrophy, that is found to be the crucial factor in the saturation dynamics. Similar results are obtained for the case of vertical propagation through a three dimensional beta plane channel. The vertical penetration of the forced wave is shown to cause a reduction of the zonal mean winds and mean potential vorticity gradients in the center of the channel, eventually leading to the formation of either a critical line or a refractive index turning surface. In both cases the penetration of the wave to high altitudes is prohibited, thus constraining wave amplitudes. While signs of non-linear behaviour are clear in synoptic maps of potential vorticity, wave-wave interactions are found to play a secondary role in the saturation process. The results of the three-dimensional beta plane channel model are then extended to a more realistic set-up, using a polar coordinate model with a basic state based on the observed winter stratosphere climatology. The basic conclusions of the idealized study are shown to remain unchanged.
by Constantine Giannitsis.
Ph.D.
Ash, Ellis R. "Rossby waves and mean currents in the Southern Ocean". Thesis, University of Edinburgh, 2000. http://hdl.handle.net/1842/11542.
Pełny tekst źródłaYang, Gui-Ying. "Propagation of nonstationary Rossby waves and extratropical-tropical interaction". Thesis, University of Reading, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.646005.
Pełny tekst źródłaJonsson, Eskil. "Modelling the Formation and Propagation of Orographic Rossby Waves". Thesis, Uppsala universitet, Luft-, vatten och landskapslära, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-325188.
Pełny tekst źródłaOrografiska Rossby-vågor är den huvudsakliga mekanismen genom vilken jetströmmarnaslingrar runt jorden och kan ha en omfattande inverkan på väder och klimat (kapitel 1). Därförär de av särskild betydelse att studera och detta projekt bör fungera som en utgångspunkt förvad man måste överväga när man försöker modellera dessa vågor. Till exempel så måste vi tahänsyn till tryckgradienter, Coriolis-effekten, orografi, potentiell vorticitetsbevarande och ävenjordens krökning på denna skala. Dessa beskrivs i detalj i kap. 2 och anpassas tillrörelseekvationerna för grunt vatten (Saint-Venant-ekvationerna). Därefter presenteras någranumeriska tekniker på grundläggande nivå för att lösa dessa ekvationer i kap. 2.4, varvid desedan implementeras för de globala Saint-Venant-ekvationerna med bevarad potentiellvorticitet i kap 3. Modellen är validerad för typiska grunda vattenflöden i ett badkar ochpasserar vanliga numeriska tester så som Gauss-kurvtestet (kap. 4.1) och bore-testet. Mennär vi överväger atmosfäriska flöden (kap. 4.2) blir det tydligt att våra modeller och numeriskametoder är primitiva och inte kan reproducera Rossby-vågor på ett stabilt sätt. Därmed,modifierar vi Hogans modell (Hogan, n.d) för att passa vår modell vilket resulterar orografiskaRossby-vågor. Dock så är dessa förskjutna och stämmer inte riktigt överens med teorin i kap.2.2. Även Hogans modell visar sig ha allvarliga begränsningar då vågorna propagerar i felriktning. Därmed är denna studie ej komplett och kräver ytterligare utveckling för att varaanvändbar.
Książki na temat "Rossby waves"
United States. National Aeronautics and Space Administration., red. Waves and instability in the atmosphere of Mars: Final report, July 1, 1987 - December 31, 1990. [Washington, DC: National Aeronautics and Space Administration, 1990.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration., red. Waves and instability in the atmosphere of Mars: Final report, July 1, 1987 - December 31, 1990. [Washington, DC: National Aeronautics and Space Administration, 1990.
Znajdź pełny tekst źródłaJohn, Stanford. Rossby-gravity waves in tropical total ozone data. [Washington, DC: National Aeronautics and Space Administration, 1993.
Znajdź pełny tekst źródłaJohn, Stanford. Rossby-gravity waves in tropical total ozone data. [Washington, DC: National Aeronautics and Space Administration, 1993.
Znajdź pełny tekst źródłaR, Ziemke J., i United States. National Aeronautics and Space Administration., red. Rossby-gravity waves in tropical total ozone data. [Washington, DC: National Aeronautics and Space Administration, 1993.
Znajdź pełny tekst źródłaVolland, Hans. Atmospheric tidal and planetary waves. Dordrecht: Kluwer Academic Publishers, 1988.
Znajdź pełny tekst źródłaChiu, Ching-Sang. Estimation of planetary wave parameters from the data of the 1981 Ocean Acoustic Tomography Experiment. Woods Hole, Mass: Woods Hole Oceanographic Institution, 1985.
Znajdź pełny tekst źródłaR, Reiter Elmar, i United States. National Aeronautics and Space Administration., red. Atmospheric planetary wave response to external forcing: Final technical report, NASA grant NAG 5-136. [Washington, D.C: National Aeronautics and Space Administration, 1985.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration., red. Large-scale dynamics and transport in the stratosphere. [Washington, D.C: National Aeronautics and Space Administration, 1990.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration., red. Large-scale dynamics and transport in the stratosphere. [Washington, D.C: National Aeronautics and Space Administration, 1990.
Znajdź pełny tekst źródłaCzęści książek na temat "Rossby waves"
Zeytounian, Radyadour. "Rossby Waves". W Asymptotic Modeling of Atmospheric Flows, 44–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-73800-5_4.
Pełny tekst źródłaMonin, A. S. "Rossby Waves". W Theoretical Geophysical Fluid Dynamics, 237–75. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-1880-1_7.
Pełny tekst źródłaPedlosky, Joseph. "Rossby Waves". W Waves in the Ocean and Atmosphere, 149–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05131-3_14.
Pełny tekst źródłaKamenkovich, V. M., M. N. Koshlyakov i A. S. Monin. "Theory of Rossby Waves". W Synoptic Eddies in the Ocean, 34–130. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4502-9_2.
Pełny tekst źródłaPedlosky, Joseph. "Rossby Waves (Continued), Quasi-Geostrophy". W Waves in the Ocean and Atmosphere, 159–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05131-3_15.
Pełny tekst źródłaDolzhansky, Felix V. "The Obukhov–Charney Equation; Rossby Waves". W Fundamentals of Geophysical Hydrodynamics, 61–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-31034-8_7.
Pełny tekst źródłaSkiba, Yuri N. "Stability of Rossby-Haurwitz (RH) Waves". W Mathematical Problems of the Dynamics of Incompressible Fluid on a Rotating Sphere, 109–33. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65412-6_5.
Pełny tekst źródłaBoyd, John P. "Kelvin, Yanai, Rossby and Gravity Waves". W Dynamics of the Equatorial Ocean, 35–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-55476-0_3.
Pełny tekst źródłaPedlosky, Joseph. "Energy and Energy Flux in Rossby Waves". W Waves in the Ocean and Atmosphere, 173–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05131-3_16.
Pełny tekst źródłaSardeshmukh, Prashant, Cécile Penland i Matthew Newman. "Rossby waves in a stochastically fluctuating medium". W Stochastic Climate Models, 369–84. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8287-3_17.
Pełny tekst źródłaStreszczenia konferencji na temat "Rossby waves"
Zaqarashvili, T. V., i Ivan Zhelyazkov. "Rossby Waves in Rotating Magnetized Fluids". W SPACE PLASMA PHYSICS: School of Space Plasma Physics. AIP, 2009. http://dx.doi.org/10.1063/1.3137937.
Pełny tekst źródłaSukoriansky, Semion, Nadejda Dikovskaya, Roger Grimshaw i Boris Galperin. "Rossby waves and zonons in zonostrophic turbulence". W WAVES AND INSTABILITIES IN SPACE AND ASTROPHYSICAL PLASMAS. AIP, 2012. http://dx.doi.org/10.1063/1.3701355.
Pełny tekst źródłaChen, Y. N., U. Haupt, U. Seidel i M. Rautenberg. "Experimental Investigation of the Longitudinal-Vortex-Nature of Rotating Stall in Vaneless Diffusers of Centrifugal Compressors". W ASME 1991 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1991. http://dx.doi.org/10.1115/91-gt-099.
Pełny tekst źródłaShevkar, Prafulla P., Anoop M V, Philippe Odier i Manikandan Mathur. "Video: Experimental visualization of Rossby waves as transport barriers". W 76th Annual Meeting of the APS Division of Fluid Dynamics. American Physical Society, 2023. http://dx.doi.org/10.1103/aps.dfd.2023.gfm.v0009.
Pełny tekst źródłaCampbell, L. J. "Nonlinear dynamics of Rossby waves in a western boundary current". W ADVANCES IN FLUID MECHANICS 2006. Southampton, UK: WIT Press, 2006. http://dx.doi.org/10.2495/afm06045.
Pełny tekst źródłaChu, Peter C., i Chin-Lung Fang. "Observed Rossby waves in the South China Sea from satellite altimetry data". W Remote Sensing, redaktorzy Charles R. Bostater, Jr. i Rosalia Santoleri. SPIE, 2004. http://dx.doi.org/10.1117/12.509064.
Pełny tekst źródładel-Castillo-Negrete, D., J. M. Finn i D. C. Barnes. "The modified drift-Poisson model: Analogies with geophysical flows and Rossby waves". W Non-neutral plasma physics III. AIP, 1999. http://dx.doi.org/10.1063/1.1302113.
Pełny tekst źródłaKALADZE, T. D., D. J. WU, O. A. POKHOTELOV, R. Z. SAGDEEV, L. STENFLO i P. K. SHUKLA. "ZONAL FLOW GENERATION BY MAGNETIZED ROSSBY WAVES IN THE IONOPHERIC E-LAYER". W Proceedings of the 12th Regional Conference. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812770523_0026.
Pełny tekst źródłaMorey, Steve, Dmitry Dukhovskoy i Cortis K. Cooper. "SS: Metocean: Measurements and Modeling Measurements of Topographic Rossby Waves along the Sigsbee Escarpment". W Offshore Technology Conference. Offshore Technology Conference, 2010. http://dx.doi.org/10.4043/20694-ms.
Pełny tekst źródłaDai, Yuqiang, Fengxia Liu, Jintao Wu, Wei Wei, Dapeng Hu i Xuewu Liu. "Influence of Skewing of Contact Face on Performance of Wave Rotor Refrigerators and Superchargers". W ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-63449.
Pełny tekst źródłaRaporty organizacyjne na temat "Rossby waves"
Peng, Melinda S. Role of Vortex Rossby Waves on Tropical Cyclone Intensity. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2008. http://dx.doi.org/10.21236/ada532809.
Pełny tekst źródłaPeng, Melinda S. Role of Vortex Rossby Waves on Tropical Cyclone Intensity. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2007. http://dx.doi.org/10.21236/ada541436.
Pełny tekst źródłaPeng, Melinda S. Role of Vortex Rossby Waves on Tropical Cyclone Intensity. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2006. http://dx.doi.org/10.21236/ada631046.
Pełny tekst źródłaMontgomery, Michael T., i Lloyd J. Shapiro. Vortex Rossby Waves and Hurricane Evolution in the Presence of Convection and Potential Vorticity and Hurricane Motion. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 1997. http://dx.doi.org/10.21236/ada628370.
Pełny tekst źródła