Artykuły w czasopismach na temat „Room Temperature CO2 Adsorption”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Room Temperature CO2 Adsorption”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Zhou, Neng, Zhen Zhou, Yuan Qin i Chu Jie Zeng. "Study on the Removal of Heavy Metals by Biomass". Advanced Materials Research 634-638 (styczeń 2013): 276–79. http://dx.doi.org/10.4028/www.scientific.net/amr.634-638.276.
Pełny tekst źródłaSenevirathna, Hasanthi L., P. Vishakha T. Weerasinghe, Xu Li, Ming-Yan Tan, Sang-Sub Kim i Ping Wu. "Counter-Intuitive Magneto-Water-Wetting Effect to CO2 Adsorption at Room Temperature Using MgO/Mg(OH)2 Nanocomposites". Materials 15, nr 3 (27.01.2022): 983. http://dx.doi.org/10.3390/ma15030983.
Pełny tekst źródłaKang, Misun, Jong-tak Lee, Min-Kyoung Kim, Myunghwan Byun i Jae-Young Bae. "Facile Synthesis of Mesoporous Silica at Room Temperature for CO2 Adsorption". Micromachines 13, nr 6 (10.06.2022): 926. http://dx.doi.org/10.3390/mi13060926.
Pełny tekst źródłaCho, Kyungil, Yeryeong Kang, Sukbyung Chae i Changhyuk Kim. "Forced Mineral Carbonation of MgO Nanoparticles Synthesized by Aerosol Methods at Room Temperature". Nanomaterials 13, nr 2 (9.01.2023): 281. http://dx.doi.org/10.3390/nano13020281.
Pełny tekst źródłaSharma, Vivekanand, Dinesh De, Ranajit Saha, Ranjita Das, Pratim Kumar Chattaraj i Parimal K. Bharadwaj. "A Cu(ii)-MOF capable of fixing CO2 from air and showing high capacity H2 and CO2 adsorption". Chemical Communications 53, nr 100 (2017): 13371–74. http://dx.doi.org/10.1039/c7cc08315g.
Pełny tekst źródłaGao, Yangfeng, Chao Dong, Fan Zhang, Hongwei Ma i Yang Li. "Constructing Polyimide Aerogels with Carboxyl for CO2 Adsorption". Polymers 14, nr 3 (18.01.2022): 359. http://dx.doi.org/10.3390/polym14030359.
Pełny tekst źródłaMarliza, Tengku Sharifah, Mohd Ambar Yarmo, Azizul Hakim, Maratun Najiha Abu Tahari i Yun Hin Taufiq-Yap. "Characterizations and Application of Supported Ionic Liquid [bmim][CF3SO3]/SiO2 in CO2 Capture". Materials Science Forum 888 (marzec 2017): 485–90. http://dx.doi.org/10.4028/www.scientific.net/msf.888.485.
Pełny tekst źródłaSilvestre-Albero, Joaquín, Anass Wahby, Antonio Sepúlveda-Escribano, Manuel Martínez-Escandell, Katsumi Kaneko i Francisco Rodríguez-Reinoso. "Ultrahigh CO2 adsorption capacity on carbon molecular sieves at room temperature". Chemical Communications 47, nr 24 (2011): 6840. http://dx.doi.org/10.1039/c1cc11618e.
Pełny tekst źródłaLiu, Zhong-Yi, Hong Zhao, Wei-Chao Song, Xiu-Guang Wang, Zheng-Yu Liu, Xiao-Jun Zhao i En-Cui Yang. "A dynamic microporous magnet exhibiting room-temperature thermal hysteresis, variable magnetic ordering temperatures and highly selective adsorption for CO2". Journal of Materials Chemistry C 7, nr 2 (2019): 218–22. http://dx.doi.org/10.1039/c8tc03356k.
Pełny tekst źródłaZhang, Hua Li, Chun Jie Yan, Xu Jian Li, Hong Quan Wang i Sen Zhou. "Study on CO2 Adsorption of Sepoilite Modified by Mixture of Ethanolamine and N, N-Dimethyl Ethanolamine". Advanced Materials Research 454 (styczeń 2012): 82–88. http://dx.doi.org/10.4028/www.scientific.net/amr.454.82.
Pełny tekst źródłaXu, Feng, Ying Yu, Jian Yan, Qibin Xia, Haihui Wang, Jing Li i Zhong Li. "Ultrafast room temperature synthesis of GrO@HKUST-1 composites with high CO2 adsorption capacity and CO2/N2 adsorption selectivity". Chemical Engineering Journal 303 (listopad 2016): 231–37. http://dx.doi.org/10.1016/j.cej.2016.05.143.
Pełny tekst źródłaRamos-Fernandez, E. V., A. Grau-Atienza, D. Farrusseng i S. Aguado. "A water-based room temperature synthesis of ZIF-93 for CO2 adsorption". Journal of Materials Chemistry A 6, nr 14 (2018): 5598–602. http://dx.doi.org/10.1039/c7ta09807c.
Pełny tekst źródłaSolis, Brian H., Yi Cui, Xuefei Weng, Jan Seifert, Swetlana Schauermann, Joachim Sauer, Shamil Shaikhutdinov i Hans-Joachim Freund. "Initial stages of CO2 adsorption on CaO: a combined experimental and computational study". Physical Chemistry Chemical Physics 19, nr 6 (2017): 4231–42. http://dx.doi.org/10.1039/c6cp08504k.
Pełny tekst źródłaWan Isahak, Wan Nor Roslam, Zatil Amali Che Ramli, Azizul Hakim Lahuri, Muhammad Rahimi Yusop, Mohamed Wahab Mohamed Hisham i Mohd Ambar Yarmo. "Enhancement of CO2 Capture Using CuO Nanoparticles Supported on Green Activated Carbon". Advanced Materials Research 1087 (luty 2015): 111–15. http://dx.doi.org/10.4028/www.scientific.net/amr.1087.111.
Pełny tekst źródłaZhao, Yongting, i Yiming Xie. "High CO2 Adsorption Enthalpy Enabled by Uncoordinated N-Heteroatom Sites of a 3D Metal-Organic Framework". Journal of Chemistry 2019 (21.12.2019): 1–5. http://dx.doi.org/10.1155/2019/4712807.
Pełny tekst źródłaSun, Jian, Manoharan Muruganathan i Hiroshi Mizuta. "Room temperature detection of individual molecular physisorption using suspended bilayer graphene". Science Advances 2, nr 4 (kwiecień 2016): e1501518. http://dx.doi.org/10.1126/sciadv.1501518.
Pełny tekst źródłaBaimuratova, Rose K., N. D. Golubeva, Gulzhian I. Dzhardimalieva, G. I. Davydova i E. I. Knerelman. "Metal-Organic Coordination Polymers Based on Copper: Synthesis, Structure and Adsorption Properties". Key Engineering Materials 816 (sierpień 2019): 108–13. http://dx.doi.org/10.4028/www.scientific.net/kem.816.108.
Pełny tekst źródłaRaaen, Steinar. "Adsorption of Carbon Dioxide on Mono-Layer Thick Oxidized Samarium Films on Ni(100)". Nanomaterials 11, nr 8 (14.08.2021): 2064. http://dx.doi.org/10.3390/nano11082064.
Pełny tekst źródłaKalwar, Basheer Ahmed, Wang Fangzong, Amir Mahmood Soomro, Muhammad Rafique Naich, Muhammad Hammad Saeed i Irfan Ahmed. "Highly sensitive work function type room temperature gas sensor based on Ti doped hBN monolayer for sensing CO2, CO, H2S, HF and NO. A DFT study". RSC Advances 12, nr 53 (2022): 34185–99. http://dx.doi.org/10.1039/d2ra06307g.
Pełny tekst źródłaHakim, Azizul, Wan Nor Roslam Wan Isahak, Maratun Najiha Abu Tahari, Muhammad Rahimi Yusop, Mohamed Wahab Mohamed Hisham i Mohd Ambar Yarmo. "Temperature Programmed Desorption of Carbon Dioxide for Activated Carbon Supported Nickel Oxide: The Adsorption and Desorption Studies". Advanced Materials Research 1087 (luty 2015): 45–49. http://dx.doi.org/10.4028/www.scientific.net/amr.1087.45.
Pełny tekst źródłaCiobanu, Marina, i Dumitru Tsiulyanu. "Effect of aging, temperature, and ambient gases on the complex impedance of As2Te13Ge8S3 glassy films". Moldavian Journal of the Physical Sciences 20, nr 2 (styczeń 2022): 151–62. http://dx.doi.org/10.53081/mjps.2021.20-2.06.
Pełny tekst źródłaZhumagaliyeva, А., V. Gargiulo, F. Raganat, Ye Doszhanov i M. Alfe. "Carbon based nanocomposite material for CO2 capture technology". Горение и Плазмохимия 17, nr 1 (5.06.2019): 9–13. http://dx.doi.org/10.18321/cpc283.
Pełny tekst źródłaMuchan, Pailin, Chintana Saiwan i Manit Nithitanakul. "Investigation of adsorption/desorption performance by aminopropyltriethoxysilane grafted onto different mesoporous silica for post-combustion CO2 capture". Clean Energy 4, nr 2 (1.04.2020): 120–31. http://dx.doi.org/10.1093/ce/zkaa003.
Pełny tekst źródłaLiu, Peng-Fei, Kai Tao, Guo-Chang Li, Meng-Ke Wu, Shuai-Ru Zhu, Fei-Yan Yi, Wen-Na Zhao i Lei Han. "In situ growth of ZIF-8 nanocrystals on layered double hydroxide nanosheets for enhanced CO2 capture". Dalton Transactions 45, nr 32 (2016): 12632–35. http://dx.doi.org/10.1039/c6dt02083f.
Pełny tekst źródłaWoo, Tae Gyun, Byeong Jun Cha, Young Dok Kim i Hyun Ook Seo. "Positive Effects of Impregnation of Fe-oxide in Mesoporous Al-Oxides on the Decontamination of Dimethyl Methylphosphonate". Catalysts 9, nr 11 (28.10.2019): 898. http://dx.doi.org/10.3390/catal9110898.
Pełny tekst źródłaManokeaw, Sattaya, Thatsaneeya Nim-Anutsonkun, Takdanai Chaiya, Warut Timprae i Damrongsak Rinchumphu. "Assessment of CO2 Reduction Potential of Indoor Plants Using Artificial Neural Network in Classrooms". Journal of Hunan University Natural Sciences 49, nr 5 (30.05.2022): 33–40. http://dx.doi.org/10.55463/issn.1674-2974.49.5.4.
Pełny tekst źródłaKunkel, Christian, Francesc Viñes i Francesc Illas. "Transition metal carbides as novel materials for CO2 capture, storage, and activation". Energy & Environmental Science 9, nr 1 (2016): 141–44. http://dx.doi.org/10.1039/c5ee03649f.
Pełny tekst źródłaCandamano, S., A. Policicchio, A. Macario, G. Conte, R. G. Agostino, P. Frontera i F. Crea. "CO2 Adsorption Investigation on an Innovative Nanocomposite Material with Hierarchical Porosity". Journal of Nanoscience and Nanotechnology 19, nr 6 (1.06.2019): 3223–31. http://dx.doi.org/10.1166/jnn.2019.16650.
Pełny tekst źródłaLiu, Min-Min, Yan-Lin Bi, Qin-Qin Dang i Xian-Ming Zhang. "Reversible single-crystal-to-single-crystal transformation from a mononuclear complex to a fourfold interpenetrated MOF with selective adsorption of CO2". Dalton Transactions 44, nr 46 (2015): 19796–99. http://dx.doi.org/10.1039/c5dt03570h.
Pełny tekst źródłaSamanta, Partha, Priyanshu Chandra i Sujit K. Ghosh. "Hydroxy-functionalized hyper-cross-linked ultra-microporous organic polymers for selective CO2 capture at room temperature". Beilstein Journal of Organic Chemistry 12 (2.09.2016): 1981–86. http://dx.doi.org/10.3762/bjoc.12.185.
Pełny tekst źródłaLing, Yajing, Chengling Song, Yunlong Feng, Mingxing Zhang i Yabing He. "A metal–organic framework based on cyclotriphosphazene-functionalized hexacarboxylate for selective adsorption of CO2 and C2H6 over CH4 at room temperature". CrystEngComm 17, nr 33 (2015): 6314–19. http://dx.doi.org/10.1039/c5ce00930h.
Pełny tekst źródłaZhao, Xuemei, Yihui Yuan, Peipei Li, Zenjun Song, Chunxin Ma, Duo Pan, Shide Wu, Tao Ding, Zhanhu Guo i Ning Wang. "A polyether amine modified metal organic framework enhanced the CO2 adsorption capacity of room temperature porous liquids". Chemical Communications 55, nr 87 (2019): 13179–82. http://dx.doi.org/10.1039/c9cc07243h.
Pełny tekst źródłaDubskikh, Vadim A., Anna A. Lysova, Denis G. Samsonenko, Alexander N. Lavrov, Konstantin A. Kovalenko, Danil N. Dybtsev i Vladimir P. Fedin. "3D Metal–Organic Frameworks Based on Co(II) and Bithiophendicarboxylate: Synthesis, Crystal Structures, Gas Adsorption, and Magnetic Properties". Molecules 26, nr 5 (26.02.2021): 1269. http://dx.doi.org/10.3390/molecules26051269.
Pełny tekst źródłaWu, Wei-Ping, Zhi-Sen Li, Bo Liu, Ping Liu, Zheng-Ping Xi i Yao-Yu Wang. "Double-step CO2 sorption and guest-induced single-crystal-to-single-crystal transformation in a flexible porous framework". Dalton Transactions 44, nr 22 (2015): 10141–45. http://dx.doi.org/10.1039/c5dt00460h.
Pełny tekst źródłaAi, Jiajia, Fu Li, Yu Wu, Yukun Yin, Zhaojun Wu i Jianbin Zhang. "Synthesis of mesoporous magnesium silicate from coal gangue for efficient CO2 adsorption at room temperature". Fuel 341 (czerwiec 2023): 127692. http://dx.doi.org/10.1016/j.fuel.2023.127692.
Pełny tekst źródłaZhang, Xiaoping, Wenjie Chen, Wei Shi i Peng Cheng. "Highly selective sorption of CO2 and N2O and strong gas-framework interactions in a nickel(ii) organic material". Journal of Materials Chemistry A 4, nr 41 (2016): 16198–204. http://dx.doi.org/10.1039/c6ta06572d.
Pełny tekst źródłaCHALAL, Nabila, Hadj HAMAIZI i Maria Del Mar SOCIAS VICIANA. "Thermodynamic Study of Light Organic Molecules Adsorption onto ZK-4 Zeolite". JOURNAL OF ADVANCES IN CHEMISTRY 10, nr 7 (22.10.2014): 2921–28. http://dx.doi.org/10.24297/jac.v10i7.6800.
Pełny tekst źródłaChong, Kok Chung, Pui San Ho, Soon Onn Lai, Sze Shin Lee, Woei Jye Lau, Shih-Yuan Lu i Boon Seng Ooi. "Solvent-Free Synthesis of MIL-101(Cr) for CO2 Gas Adsorption: The Effect of Metal Precursor and Molar Ratio". Sustainability 14, nr 3 (20.01.2022): 1152. http://dx.doi.org/10.3390/su14031152.
Pełny tekst źródłaLakapu, Mada Mariana, i Nurul Widiastuti. "Synthesis of Zeolite-X Supported on Kapok Fiber for CO2 Capture Material: Variation of Immersion Time during Fiber Activation". Indonesian Journal of Chemistry 17, nr 3 (30.11.2017): 471. http://dx.doi.org/10.22146/ijc.25162.
Pełny tekst źródłaRakic, Vesna, Vera Dondur i Radmila Hercigonja. "FTIR study of carbon monoxide adsorption on ion-exchanged X, Y and mordenite type zeolites". Journal of the Serbian Chemical Society 68, nr 4-5 (2003): 409–16. http://dx.doi.org/10.2298/jsc0305409r.
Pełny tekst źródłaGęsikiewicz-Puchalska, Andżelika, Michal Zgrzebnicki, Beata Michalkiewicz, Agnieszka Kałamaga, Urszula Narkiewicz, Antoni W. Morawski i Rafal Wrobel. "Changes in Porous Parameters of the Ion Exchanged X Zeolite and Their Effect on CO2 Adsorption". Molecules 26, nr 24 (11.12.2021): 7520. http://dx.doi.org/10.3390/molecules26247520.
Pełny tekst źródłaGomez, Luis Fernando, Renju Zacharia, Pierre Bénard i Richard Chahine. "Simulation of Binary CO2/CH4Mixture Breakthrough Profiles in MIL-53 (Al)". Journal of Nanomaterials 2015 (2015): 1–15. http://dx.doi.org/10.1155/2015/439382.
Pełny tekst źródłaWuri, M. A., A. Pertiwiningrum, R. Budiarto, M. Gozan i A. W. Harto. "The Waste Recycling of Sugarcane Bagasse-Based Biochar for Biogas Purification". IOP Conference Series: Earth and Environmental Science 940, nr 1 (1.12.2021): 012029. http://dx.doi.org/10.1088/1755-1315/940/1/012029.
Pełny tekst źródłaGuo, Xingmei, Sihan Tang, Yan Song i Junmin Nan. "Adsorptive removal of Ni2+ and Cd2+ from wastewater using a green longan hull adsorbent". Adsorption Science & Technology 36, nr 1-2 (25.07.2017): 762–73. http://dx.doi.org/10.1177/0263617417722254.
Pełny tekst źródłaFirouzi, Amin, Shafreeza Sobri, Faizah Mohd Yasin i Fakhru'l Razi Ahmadun. "The Effect of CH4 and CO2 Exposure on Carbon Nanotubes Electrical Resistance". Advanced Materials Research 214 (luty 2011): 655–61. http://dx.doi.org/10.4028/www.scientific.net/amr.214.655.
Pełny tekst źródłaHou, Min, Yudan He, Xuewen Yang, Yuchun Yang, Xu Lin, Yongxing Feng, Huan Kan, Huirong Hu, Xiahong He i Can Liu. "Preparation of Biomass Biochar with Components of Similar Proportions and Its Methylene Blue Adsorption". Molecules 28, nr 17 (26.08.2023): 6261. http://dx.doi.org/10.3390/molecules28176261.
Pełny tekst źródłaGranados-Correa, Francisco, i Juan Bonifacio-Martínez. "Synthetic alkaline-earth hydroxyapatites: Influence of their structural, textural, and morphological properties over Co2+ ion adsorption capacity". Materials Science-Poland 39, nr 2 (1.06.2021): 252–64. http://dx.doi.org/10.2478/msp-2021-0022.
Pełny tekst źródłaAkimana, Emmanuelia, Jichao Wang, Natalya V. Likhanova, Somboon Chaemchuen i Francis Verpoort. "MIL-101(Cr) for CO2 Conversion into Cyclic Carbonates, Under Solvent and Co-Catalyst Free Mild Reaction Conditions". Catalysts 10, nr 4 (22.04.2020): 453. http://dx.doi.org/10.3390/catal10040453.
Pełny tekst źródłaMORI, E. E., i M. KAMARATOS. "ADSORPTION KINETICS OF POTASSIUM ON SrTiO3(100)". Surface Review and Letters 13, nr 05 (październik 2006): 681–86. http://dx.doi.org/10.1142/s0218625x06008657.
Pełny tekst źródłaZhou, Xiu Yan, i Xiang Xin Xue. "Study on Adsorption of Heavy Metalion in Metallurgical Wastewater by Sepiolite". Advanced Materials Research 726-731 (sierpień 2013): 2585–88. http://dx.doi.org/10.4028/www.scientific.net/amr.726-731.2585.
Pełny tekst źródła