Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Room Temperature CO2 Adsorption.

Rozprawy doktorskie na temat „Room Temperature CO2 Adsorption”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 21 najlepszych rozpraw doktorskich naukowych na temat „Room Temperature CO2 Adsorption”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.

1

Meghani, Bishan. "Moving bed temperature swing adsorption processes for post-combustion CO2 capture". Thesis, University of Nottingham, 2015. http://eprints.nottingham.ac.uk/29140/.

Pełny tekst źródła
Streszczenie:
Due to high regeneration energy demands for amine absorption processes for post-combustion CO2 capture, alternative technologies such as adsorption processes using solid adsorbents have been considered. Other practical issues such as corrosion of equipment and loss of solvent can be avoided with adsorption processes. Fixed bed adsorption processes, in which CO2 adsorption and adsorbent regeneration are performed successively in a vessel packed with adsorbent, are the most common adsorption processes. However, in fixed bed temperature swing adsorption (TSA) processes, large columns and long heating and cooling times would be needed. Fixed bed pressure swing adsorption (PSA) processes use electrical energy, which is more expensive than thermal energy in a power plant. Therefore, the feasibility of moving bed adsorption processes including fluidised-bed, co-current and counter-current systems is investigated. In these systems, the adsorbent continuously circulates from a CO2 adsorber to a regenerator. The adsorbents considered are a supported amine adsorbent, activated carbon and zeolite 13X. Numerical simulations of moving bed TSA cycles for CO2 capture have been carried out. The effects of influential parameters in the process have been assessed via sensitivity analyses. It was found that counter-current beds with supported amine adsorbent give the best overall performance. Compared to an amine absorption process, it was found that a moving bed TSA process without heat integration requires the same heat consumption per unit mass of CO2 captured. There is a potential for a lower heat consumption in moving bed TSA processes if, similarly to amine absorption processes, heat integration is carried out or if the CO2 working capacity of the adsorbent can be increased.
Style APA, Harvard, Vancouver, ISO itp.
2

Dunn, Andrew William. "Adsorption and manipulation of C←6←0 on Si(111)-7x7". Thesis, University of Nottingham, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.388246.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Hasib-ur-Rahman, Muhammad. "CO2 CAPTURE USING ALKANOLAMINE/ROOM-TEMPERATURE IONIC LIQUID BLENDS . Absorption, Regeneration, and Corrosion Aspects". Thesis, Université Laval, 2013. http://www.theses.ulaval.ca/2013/30062/30062.pdf.

Pełny tekst źródła
Streszczenie:
Le réchauffement climatique, résultant essentiellement des émissions anthropiques de dioxyde de carbone, demeure un sujet de grande préoccupation. Le captage et la séquestration du dioxyde de carbone est une solution viable permettant de prévoir une baisse des émissions de CO2 issues des importantes sources ponctuelles qui impliquent la combustion des carburants fossiles. Dans cette perspective, les systèmes aqueux d’alcanolamines offrent une solution prometteuse à court terme pour la capture du CO2 dans les installations de production d'électricité. Cependant, ces systèmes sont confrontés à divers accrocs opératoires tels que les limitations d’équilibre, les grandes quantités d’énergie requises pour la régénération, les pertes en solvant et la corrosion prononcée des installations, pour ne citer que ces quelques inconvénients. L’eau étant la principale cause de ces complications, une mesure à prendre pourrait être le remplacement de la phase aqueuse par un solvant plus stable. Les liquides ioniques à température ambiante, dotés d’une haute stabilité thermique et pratiquement non-volatils émergent en tant que candidats prometteurs. De plus, grâce à leur nature ajustable, ils peuvent être apprêtés conformément aux exigences du procédé. La substitution de la phase aqueuse dans les processus utilisant l’alcanolamine par les liquides ioniques à température ambiante ouvre une opportunité potentielle pour une capture efficace du CO2. Un aspect remarquable de ces systèmes serait la cristallisation du produit résultant de la capture du CO2 (c-à-d, le carbamate) au sein même du liquide ionique qui non seulement déjouerait les contraintes d’équilibre mais également pourvoirait une opportunité intéressante pour la séparation des produits. Étant donné le peu d’information disponible dans la littérature sur la viabilité des systèmes utilisant la combinaison d’amine et de liquide ionique, l’étude proposée ici a pour but d’apporter une meilleure compréhension sur l’efficacité à séparer le CO2 d’un mélange de type postcombustion à travers une approche plus systématique. À cet effet, des liquides ioniques à base d’imidazolium ([Cnmim][Tf2N], [Cnmim][BF4], [Cnmim][Otf]) ont été choisis. Deux alcanolamines, à savoir, le 2-amino-2-methyl-1-propanol (AMP) et le diéthanolamine (DEA) ont été examinées en détail afin d’explorer la capture du CO2 et les possibilités de régénération qu’offre un système amine-liquide ionique. Les résultats ont révélé l’intérêt de la combinaison DEA-liquide ionique étant donné que ce système pourrait aider à réduire de manière significative l’écart entre les températures d’absorption et de régénération, promettant ainsi une perspective attrayante en termes d’économie d’énergie. En outre, les liquides ioniques ont également été scrutés du point de vue de leur nature hydrophobe/hydrophile afin d’étudier le comportement corrosif du mélange amine-liquide ionique au contact d’échantillons d’acier au carbone. Bien que l’utilisation des liquides ioniques hydrophiles ait aidé à abaisser la vitesse de corrosion jusqu’à concurrence de 72%, l’emploi de liquides ioniques hydrophobes s’avère plus efficace, car annulant quasiment le phénomène de corrosion même dans un environnement riche en CO2. Dans le cas des mélanges immiscibles comme DEA-[hmim][Tf2N], une agitation continue s’avère nécessaire afin d’assurer une dispersion prolongée des gouttelettes d’amine émulsifiées au sein de liquides ioniques et ainsi atteindre une vitesse de capture optimale.
Global warming, largely resulting from anthropogenic emissions of carbon dioxide, continues to remain a matter of great concern. Carbon capture and storage (CCS) is a viable solution to ensure a prevised fall in CO2 emissions from large point sources involving fossil fuel combustion. In this context, aqueous alkanolamine systems offer a promising near-term solution for CO2 capture from power generation facilities. However, these face several operational hitches such as equilibrium limitations, high regeneration energy requirement, solvent loss, and soaring corrosion occurrence. The main culprit in this respect is water and, accordingly, one feasible practice may be the replacement of aqueous phase with some stable solvent. Room-temperature ionic liquids (RTILs), with high thermal stability and practically no volatility, are emerging as promising aspirants. Moreover, owing to the tunable nature of ionic liquids, RTIL phase can be adapted in accordance with the process requirements. Replacing aqueous phase with RTIL in case of alkanolamine based processes provided a potential opportunity for efficient CO2 capture. The most striking aspect of these schemes was the crystallization of CO2-captured product (carbamate) inside the RTIL phase that not only helped evade equilibrium constraints but also rendered a worthy opportunity of product separation. Since there is little information available in the literature about the viability of amine-RTIL systems, the proposed research was aimed at better understanding CO2 separation proficiency of these fluids through a more systematic approach. Imidazolium RTILs ([Cnmim][Tf2N], [Cnmim][BF4], [Cnmim][Otf]) were chosen for this purpose. Two alkanolamines, 2-amino-2-methyl-1-propanol (AMP) and diethanolamine (DEA) were examined in detail to explore CO2 capture and regeneration capabilities of amine-RTIL systems. The results revealed the superiority of DEA-RTIL combination as this scheme could help significantly narrow the gap between absorption and regeneration temperatures thus promising a sparkling prospect of attenuating energy needs. Furthermore, ionic liquids were scrutinized in reference to their hydrophobic/hydrophilic nature to study the corrosion behaviour of carbon steel in amine-RTIL media. Though hydrophilic ionic liquids helped decrease corrosion occurrence up to 72%, hydrophobic RTIL appeared to be the most effective in this regard, virtually negating the corrosion phenomenon under CO2 rich environment. In case of immiscible blends like DEA-[hmim][Tf2N], continual agitation appeared to be a necessity to ensure a prolonged dispersion of amine in the RTIL phase and, thereby, to attain an optimal capture rate.
Style APA, Harvard, Vancouver, ISO itp.
4

Bao, Jie. "CO2 enrichment in ambient air by temperature swing adsorption and its applications for stimulating plant growth in greenhouses". Thesis, University of British Columbia, 2014. http://hdl.handle.net/2429/46500.

Pełny tekst źródła
Streszczenie:
Adsorption on proper adsorbents is one of the commonly used technologies to capture carbon dioxide. Zeolites, such as 13X, exhibit good adsorption capacity and selectivity towards CO₂. Compared with CO₂ capture from large point sources with high concentration of CO₂, direct capture from the ambient air plays a better role in the reduction of greenhouse gases. On the other hand, greenhouse crops can be benefited from CO₂ enrichment, typically around 1000 ppm. By applying temperature swing adsorption to ambient air, CO₂ concentration can be enriched from 400 ppm to about 1000 ppm, which can then be directly used for greenhouse CO₂ enrichment. The proposed method not only helps the capture of CO₂ from air but also provides an enriched CO₂ stream to greenhouses. In this study, the performance of zeolite 13X was evaluated in a fixed bed reactor for enriching ambient CO₂ concentration from 400 ppm to 1000 ppm by temperature swing adsorption under different operating conditions such as ambient temperature and moisture content. Results showed that 13X performed well for both CO₂ adsorption and desorption, and an enrichment factor of 3 can be reached, demonstrating the feasibility of the proposed TSA method. A lower adsorption temperature and a higher desorption temperature would result in a higher enriched CO₂ concentration. Finally, economic analyses have been carried out to compare the unit cost of proposed method for capturing one tonne CO₂ with the cost of other air capture technologies and the cost of CO₂ supply in current greenhouse operations. The unit cost of CO₂ enrichment by temperature swing adsorption seems to be quite competitive if the adsorption and desorption capacity of the currently tested adsorbent could be increased by six times to the level as reported in the literature.
Style APA, Harvard, Vancouver, ISO itp.
5

Radfarnia, Hamid Reza. "High-temperature CO2 sorbents and application in the sorption enhanced steam reforming for hydrogen production". Thesis, Université Laval, 2013. http://www.theses.ulaval.ca/2013/30465/30465.pdf.

Pełny tekst źródła
Streszczenie:
Le reformage à la vapeur couplé à la sorption in-situ d’un composant du milieu réactionnel (sorption-enhanced steam reforming, SESR) est un procédé d’avant-garde qui permet simultanément la production d’hydrogène de très haute pureté et la capture du CO2. L'objectif principal de ce travail est le développement de nouveaux sorbants pour le CO2 applicables à hautes températures et l’étude de leur application dans SESR. Deux nouvelles méthodes de synthèse ont été proposées pour synthétiser du zirconate de lithium (Li2ZrO3), zirconate de sodium (Na2ZrO3) ainsi que des matériaux à base d’oxyde de calcium (CaO), trois catégories de sorbants capables de réagir avec le CO2 à hautes températures. L’application du Li2ZrO3 à la capture du CO2 a démontré une augmentation de l’activité du matériau produit par une nouvelle méthode de synthèse combinant un surfactant et traitement à ultrasons, comparativement au Li2ZrO3 préparé par une méthode avec surfactant seulement (sans ultrasons) ou par la méthode conventionnelle (mélange des composants en phase liquide). Néanmoins, pour des pressions partielles en CO2 inférieures à 0,75 bar, la faible cinétique de sorption du CO2 obtenue par le Li2ZrO3 limite son application au procédé SESR. En considérant l’amélioration des propriétés de sorption obtenue en appliquant la méthode combinée surfactant/ultrasons à la synthèse du Li2ZrO3, la même technique a été aussi appliquée à la synthèse du Na2ZrO3. Des résultats inattendus ont été pourtant obtenus. Le Na2ZrO3 développé par la nouvelle technique a été moins actif durant les cycles sorption/régénération que celui produit par la méthode conventionnelle, de par la faible résistance de sa structure poreuse à de très hautes températures. La nouvelle méthode de synthèse combinée surfactant/ultrasons a été aussi appliquée pour la synthèse de CaO stabilisé par du zirconium (Zr). Un rapport Zr/Ca de 0,303 a été trouvé optimal pour la production d’un sorbant présentant la meilleure stabilité et activité pour la capture de CO2. Dans les conditions sévères d’opération, les résultats ont généralement indiqué une capacité de sorption du CaO stabilisé supérieure à celle du CaO pure. Dans le but de réduire les coûts de production des sorbants, une source moins chère de CaO (calcaire naturel) a été utilisée en combinaison avec une nouvelle méthode de synthèse qui consiste dans l’acidification du calcaire par de l’acide citrique suivie par une calcination en deux étapes (argon et air). Doté d’une structure hautement poreuse, le CaO produit a révélé une stabilité nettement meilleure par rapport au calcaire, ainsi qu’une capacité accrue de sorption du CO2. La même technique de synthèse a été aussi utilisée pour développer plusieurs matériaux à base de CaO stabilisé par divers oxydes métalliques (Al, Zr, Mg et Y), afin d’améliorer la stabilité du sorbant dans les conditions opérationnelles sévères, particulièrement les hautes températures de régénération en présence de CO2. CaO stabilisé par l’aluminium (Al) ou le zirconium (Zr) a démontré une meilleure activité comparativement aux autres matériaux synthétisés, inclusivement dans des conditions sévères d’opération. L’application de ces deux types de sorbants au vaporeformage du méthane (SESMR) a été ensuite étudiée dans un réacteur à lit fixe. Pour minimiser les limitations diffusionnelles, deux matériaux hybrides sorbant-catalyseur ont été développés. NiO-CaO stabilisé par Zr, préparé par la méthode combinée surfactant/ultrasons, dont le contenu en NiO est de 20.5 % (masse) a montré une efficacité dans la production d’hydrogène de 92% lors du premier cycle de reformage, ce qui est remarquablement plus élevée que le rendement d’équilibre en H2 pour le procédé traditionnel de vaporeformage du méthane (SMR) ( 70%). La méthode acidification/calcination en deux étapes a été utilisée pour produire le deuxième matériau hybride (NiO-CaO stabilisé par Al). L’application du matériau contenant 25 % (masse) de NiO a conduit à une efficacité moyenne de production d’hydrogène de 97.3%, démontrant ainsi son grand potentiel pour le SESMR. Les résultats de ce projet de recherche ont clairement démontré que le procédé SESR est une alternative très avantageuse au procédé traditionnel de reformage à la vapeur (sans séparation in-situ de CO2) pour la production d’hydrogène de très haute pureté. Le matériau hybride sorbant-catalyseur NiO-CaO stabilisé par Al a démontré une excellente activité à long terme, en confirmant son potentiel élevé pour application dans le procédé SESMR.
Sorption-enhanced steam reforming (SESR) is a forefront technology to produce H2 clean fuel, which integrates both CO2 capture and H2 production in a single process. The main objective of this work is to develop novel high-temperature CO2 sorbents and to investigate their application in SESR operation. Special attention was given to lithium zirconate (Li2ZrO3), sodium zirconate (Na2ZrO3) and calcium oxide (CaO)-based materials, as most famous high temperature CO2 sorbents, by applying two novel synthesis techniques. The application of Li2ZrO3 in CO2 capture sorption showed an increase in activity of the material prepared by surfactant template/sonication method compared to Li2ZrO3 prepared by simple surfactant template method (without sonication) or conventional wet-mixing route. Nevertheless, porous Li2ZrO3 still suffered from slow kinetics of CO2 sorption at low CO2 partial pressure (below 0.75 bar), which can limit its application for SESMR operation. Taking into consideration the improvement of Li2ZrO3 sorption properties, the same surfactant template/sonication technique was then applied to develop porous Na2ZrO3. The behavior of the new developed Na2ZrO3 was unexpected. The samples prepared by surfactant template/sonication technique were found to be less active than the conventional Na2ZrO3 during cyclic operation, due to the low resistivity of the pore structure at the very high temperature treatment required for calcination. The same surfactant template/sonication was also applied to develop Zr-stabilized CaO sorbents. An optimum Zr/Ca ratio of 0.303 was found to maximize the stability and CO2 capture activity of the proposed Zr-stabilized CaO sorbent. The results generally showed a better CO2 capture ability of Zr-stabilized CaO sorbent in comparison with pure CaO in severe cyclic operating conditions. With the purpose of reducing the cost of sorbent production, a cheaper source of CaO (natural limestone) was also considered and a novel synthesis technique (limestone acidification by citric acid followed by two-step calcination (in Ar and air atmospheres)) was applied in order to prepare highly porous CaO structure with unique CO2 capture ability. The results revealed a much better stability and CO2 sorption activity of the developed sorbent compared to natural limestone. The same technique was employed to develop a number of metal oxide (Al, Zr, Mg and Y)-stabilized CaO sorbents in order to enhance sorbent stability in severe operating conditions, i.e., high temperature regeneration in the presence of CO2. Al and Zr-stabilized CaO showed the best activity during both mild and severe operating conditions. The performance of the developed CO2 sorbents providing the best performance in CO2 capture (Zr-stabilized and Al-stabilized CaO) were then investigated experimentally in the sorption enhanced steam methane reforming (SESMR) using a fixed-bed reactor. To minimize the diffusional limitations, a hybrid catalyst-sorbent was developed for both sorbents. The application of Zr-stabilized CaO-nickel hybrid catalyst with 20.5 wt% NiO loading, prepared by surfactant-template/sonication method, resulted in 92% H2 production efficiency for the initial SESMR cycle, which is remarkably higher than traditional steam methane reforming (SMR) equilibrium H2 yield (70 %). The second developed hybrid sorbent-catalyst (Al-stabilized CaO-NiO) was prepared using limestone acidification coupled with two-step calcination technique. The long-term application of the hybrid catalyst containing 25 wt% NiO led to an average H2 production efficiency of 97.3%, proving its high efficiency in the SESMR process. In summary, the results of this thesis show that the SESR process is as an efficient alternative of traditional steam reforming for production of highly pure H2. The Al-stabilized CaO-NiO hybrid sorbent-catalyst showed an excellent activity over long-term operation, thus confirming its very high potential for use in the SESMR process.
Style APA, Harvard, Vancouver, ISO itp.
6

Mérel, Jérôme. "Etude du captage post-combustion du CO2 grâce à un procédé TSA (Temperature Swing Adsorption) à chauffage et refroidissements indirects". Paris, CNAM, 2008. http://www.theses.fr/2008CNAM0700.

Pełny tekst źródła
Streszczenie:
To deal with the Greenhouse Gases emissions increase, CO2 post-combustion capture linked to its storage is a promising technological solution. Different methods are currently developed, including the adsorption which is this study’s core interest. This work concerns the use of a TSA process (Temperature Swing Adsorption) for CO2 post-combustion capture. This process is an adsorber based on indirect heating (steam condensation) and cooling (water circulation) by means of an internal heat-exchanger (no contact between the coolant and the adsorbant). This study takes experimental and numerical approaches. From the preliminary experiments, the 5A zeolite was selected. Different operating conditions (inlet gas composition, desorption temperature, purge flow rate, periods of cycles, pre-cooling / pre-heating steps,…) were then tested from a mixture N2-CO2 in order to obtain an optimal compromise between the performance criteria. Then, other configurations were tested within a numerical model validated from previous experiments. In the adsorption step, the inlet gas temperature and the initial bed temperature have very little influence on the performances of the adsorber. Due to a parametric study done for cycle experiments, optimal operating conditions, in particular with a pre-cooling step, were determined for this specific application. The results obtained are very encouraging as they underline comparable performances with the reference process ones, the amine absorption
Face à l’augmentation des émissions de gaz à effet de serre, le captage post-combustion du CO2 associé à son stockage est une solution technologique prometteuse. Différentes méthodes sont actuellement développées dont l’adsorption qui fait l’objet de cette étude. Ce travail concerne l’utilisation d’un procédé TSA (Temperature Swing Adsorption) pour le captage post-combustion du CO2. Ce procédé fait appel à un adsorbeur équipé d’un échangeur interne permettant un chauffage (vapeur d’eau) et refroidissement (circulation d’eau) indirects (pas de contact entre le caloporteur et l’adsorbant). Ce travail s’appuie à la fois sur une partie expérimentale et numérique. A partir des premières expériences, la zéolithe 5A a été sélectionnée. Différentes conditions opératoires (composition de l’alimentation, température de désorption, débit de purge, durée du cycle, étapes de pré-refroidissement / pré-chauffage,…) ont alors été testées à partir d’un mélange N2-CO2 afin d’obtenir un compromis optimal entre les critères de performance. D’autres configurations ont ensuite été testées au moyen d’un modèle numérique préalablement validé à partir d’expériences. En phase d’adsorption, la température d’alimentation et la température initiale du lit n’ont que peu d’influence sur les performances de l’adsorbeur. Grâce à une étude paramétrique effectuée pour des cycles, des conditions opératoires optimales, notamment avec une étape de pré-refroidissement, ont été déterminées pour cette application spécifique. Les résultats ainsi obtenus sont tout à fait encourageants puisqu’ils ont permis de mettre en évidence des performances comparables à celles des procédés de référence d’absorption par amine
Style APA, Harvard, Vancouver, ISO itp.
7

Wilson, Sean. "Adsorption Separation of CO2 in Low Concentrations for Applications in Direct Air Capture and Excimer Gas Separation". Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/40561.

Pełny tekst źródła
Streszczenie:
The overall objective of this thesis is to evaluate the fundamentals of current low concentration CO2 separation technologies and to provide an alternate method using adsorption technology with existing as well as new adsorbents. Two different applications for the adsorption of CO2 are explored; Direct Air Capture (DAC) and excimer gas purification. The investigation of aerogels as possible adsorbent for these applications was also explored. The first application, DAC of CO2 using adsorbents, addresses climate change by reducing the amount of atmospheric CO2 levels that are directly correlated to global warming. Because of DAC being carbon negative, this field has gained significant attention in the literature. DAC as a CO2 reduction strategy was approached in two ways: 1. Chapter 2 investigates capturing and concentrating CO2 from 0.04% in the air to 95% to be able to sequester it into the ground. This research began by doing an adsorbent selection using pure gas gravimetric measurements on seven different commercially available type X zeolites that were determined to have potential for this separation. Breakthrough experiments were then carried out with the most promising zeolite by perturbing the bed with compressed ambient air. In the process studied, a basic four step temperature vacuum swing adsorption (TVSA) cycle was investigated comprising the following steps: pressurization, adsorption, blowdown, and desorption. Four different regeneration temperatures were tested along with four different gas space velocities. With this cycle configuration, CO2 was concentrated to 95% from 0.04% with total capture fractions as high as 81%. This study highlighted methods to reduce the energy consumption per ton of CO2 captured in the system as well as the potential of using low Si/Al ratio faujasite structured zeolites in DAC of CO2 for greenhouse gas reduction. 2. Chapter 3 expands on the research of Chapter 2 by capturing CO2 from 0.04% in the air and concentrating it to high purity CO2 levels where the cost for operating the process will be reimbursed through the value of the produced CO2. The goal of this research was to increase the CO2 to as high as possible because the purer the CO2, the more valuable it is. This research started by conducting an in-depth investigation into the pure gas adsorption of CO2, N2, O2, and Ar on the most promising zeolite from Chapter 2. The data was then fitted to the TD-Toth model which allowed for the evaluation of the TVSA cycle and showed the potential of reducing the pressure and/or elevating the temperature during the blowdown step in order to produce high purity CO2. To confirm this, the TVSA cycle was run on a fixed bed breakthrough experiment where high purity CO2 was produced between a concentration of 99.5% and 99.96% by lowering the blowdown pressure. By controlling the blowdown temperature, the concentration of the product was increased from 99.8% to 99.95%, however with a significant loss of CO2. This effect of N2, O2, and Ar desorbing during the blowdown step with CO2 desorbing during the evacuation step is shown graphically by measuring the concentration and flow rate of the exiting gas species. The results from this study show the potential for producing a valuable product of high purity CO2 from atmospheric concentrations. The second application in this thesis that is explored in Chapter 4 is the purification of trace impurities of CO2, CF4, COF2, and O2 from F2, Kr, and Ne for applications in excimer lasers. Due to the incompatibility of many adsorbents to F2 and HF, aluminas and polymeric adsorbents were selected as potentially compatible materials. To increase the compatibility of these adsorbents, the use of a cryo-cooler was determined to be feasible to precool the feed stream before separation, which increases the adsorption capacity and compatibility of the material to F2 and HF. To determine the adsorption potential in the low concentration of these adsorbents, the concentration pulse chromatographic technique was chosen to determine the Henry’s Law constants of CO2, CF4, and O2. This data was then plotted on the van’t Hoff plot and extrapolated to colder temperatures to determine the benefit of using a cryo-cooler. From this study, it was determined that HayeSep Q was the best polymeric adsorbent with significant adsorption of CO2 at temperatures below -50˚C while being the best performing CF4 adsorbent. AA-300 was the best performing alumina in this study while having significant adsorption of CF4 at temperatures below -135˚C. However, from a compatibility standpoint, both of these materials need to be tested to determine their robustness in the presence of F2 and HF at room and reduced temperatures. Chapters 5 & 6 in this thesis explore the fundamentals of adsorption on aerogels as a prelude to using aerogels as possible adsorbents for DAC of CO2. This investigation into aerogels looks at silica aerogels and carbon aerogels, which are both industrially produced and explores their adsorption with relation to like materials such as silica gel and activated carbons. Both of these Chapters utilize experimentally determined adsorption isotherms of CO2, N2, O2, and Ar as well as characterization to determine adsorption trends in the materials. Some major conclusions for silica aerogels were that common surface modifications to make the material more resilient against water adsorption impacts the adsorption of CO2 significantly with roughly 4 fold difference in adsorption capacity. For carbon aerogels some major conclusions were that the adsorption was increasingly dominated by the heterogeneous nature of the surface at lower pressures and increasingly dominated by the pore size at the higher pressures. Both chapters discuss the adsorption of air along with ideas such as the influence of gas thermal conductivity in the pores with respects to adsorption. L'objectif général de cette thèse est d'évaluer les principes fondamentaux des technologies actuelles de séparation du CO2 à faible concentration et de fournir une méthode alternative utilisant la technologie d’adsorption avec des adsorbants actuels ainsi que d'en découvrir de nouveaux. Deux applications différentes pour l'adsorption du CO2 ont été explorées; la capture directe dans l’air ambient (CAD) et la purification des gaz excimères, ainsi que la recherche d'aérogels comme adsorbant possible pour ces applications. La première application, le CAD du CO2 utilisant des adsorbants, pourrait répondre aux changements climatiques puisque les niveaux de CO2 atmosphérique sont directement corrélés au réchauffement climatique. Dernièrement, le CAD a fait l'objet d'une attention particulière en tant que stratégie de réduction du CO2, par conséquent, deux voies différentes ont été explorées dans cette thèse: 1. Le chapitre 2 étudie la capture et la concentration du CO2 de 0,04% dans l'air à 95% afin de pouvoir l’enfermer dans la terre. Pour ce faire, une sélection d'adsorbant a été effectué en utilisant des mesures gravimétriques à gaz pur sur sept zéolithes de type X disponibles dans le commerce qui ont été déterminés comme ayant un potentiel pour cette séparation. Des expériences révolutionnaires ont ensuite été réalisées avec la zéolite la plus prometteuse en perturbant le lit avec de l'air ambiant comprimé. Dans le processus étudié, un cycle basique à quatre étapes d’adsorption modulée en température et pression (AMTP) a été étudié, comprenant les étapes suivantes: pressurisation, adsorption, purge et désorption. Quatre températures de régénération différentes ont été testées ainsi que quatre vitesses spatiales de gaz différents. Avec cette configuration de cycle, le CO2 était concentré à 95% de 0,04% avec des fractions de capture totales aussi élevées que 81%. Cette étude a mis en évidence des méthodes pour réduire la consommation d'énergie par tonne de CO2 captée dans le système ainsi que le potentiel d'utilisation de zéolithes structurées à base de faujasite à faible rapport Si/Al dans le CAD du CO2 pour la réduction des gaz à effet de serre. 2. Le chapitre 3 approfondit les recherches du chapitre 2 en capturant le CO2 de 0,04% dans l'air et en le concentrant à des niveaux de très haute pureté où le processus sera remboursé par la valeur du CO2 produit. L'objectif de cette partie était d'augmenter la pureté du CO2 le plus possible car plus le CO2 est pur, plus il est précieux. Une enquête approfondie sur l'adsorption de gaz pur de CO2, N2, O2 et Ar sur la zéolite la plus prometteuse du chapitre 2. Les données ont ensuite été ajustées au modèle TD-Toth qui a permis d'évaluer le cycle AMTP et a montré le potentiel de réduire la pression et/ou d'élever la température pendant l'étape de purge afin de produire du CO2 de haute pureté. Pour confirmer cela, le cycle AMTP a été fait par le biais d’une expérience dans un lit fixe où du CO2 de haute pureté a été produit entre une concentration de 99,5% et 99,96% en abaissant la pression de purge. En contrôlant la température de purge, la concentration du produit est passée de 99,8% à 99,95%, mais avec une perte importante de CO2. Cet effet de la désorption de N2, O2 et Ar pendant l'étape de purge avec la désorption du CO2 pendant l'étape d'évacuation est illustré graphiquement en mesurant la concentration et le débit des espèces de gaz sortant. Les résultats de cette étude montrent le potentiel de production d'un produit précieux de CO2 de haute pureté à partir des concentrations atmosphériques. La deuxième application de cette thèse qui est explorée au Chapitre 4 est la purification des traces d'impuretés de CO2, CF4, COF2 et O2 de F2, Kr et Ne pour des applications dans les lasers à excimère. En raison de l'incompatibilité de nombreux adsorbants avec le F2 et le HF, les alumines et les adsorbants polymères ont été sélectionnés comme matériaux potentiellement compatibles. Pour augmenter la compatibilité de ces adsorbants, l'utilisation d'un cryoréfrigérant a été jugée possible pour pré-refroidir le flux d'alimentation avant la séparation, ce qui augmente la capacité d'adsorption et la compatibilité du matériau en F2 et HF. Pour déterminer le potentiel d'adsorption dans la faible concentration de ces adsorbants, la technique de chromatographie pulsée de concentration a été choisie pour déterminer les constantes de la loi de Henry de CO2, CF4 et O2. Ces données ont ensuite été tracées sur le graphique van’t Hoff et extrapolées à des températures plus froides pour déterminer les avantages de l’utilisation d’un cryoréfrigérant. À partir de cette étude, il a été déterminé que HayeSep Q était le meilleur adsorbant polymère avec une adsorption significative de CO2 à des températures inférieures à -50 ° C tout en étant l'adsorbant CF4 le plus performant. L'AA-300 était l'alumine la plus performante de cette étude tout en ayant une adsorption significative de CF4 à des températures inférieures à -135 °C. Cependant, du point de vue de la compatibilité, ces deux matériaux doivent être testés pour déterminer leur robustesse en présence de F2 et de HF à température ambiante et réduite. Les chapitres 5 et 6 explorent les principes fondamentaux de l'adsorption sur les aérogels en prélude à l'utilisation d'aérogels comme adsorbants possibles pour le CAD du CO2. Cette enquête sur les aérogels examine les aérogels de silice et les aérogels de carbone, qui sont tous les deux fabriqués industriellement et explore leur adsorption par rapport à des matériaux similaires tels que le gel de silice et les charbons actifs. Ces deux chapitres utilisent des isothermes d'adsorption déterminés expérimentalement de CO2, N2, O2 et Ar ainsi que la caractérisation pour déterminer les tendances d'adsorption dans les matériaux. Certaines conclusions majeures pour les aérogels de silice étaient que les modifications de surface courantes pour rendre le matériau plus résistant à l'adsorption d'eau ont un impact significatif sur l'adsorption de CO2 avec une différence d'environ 4 fois dans la capacité d'adsorption. Pour les aérogels de carbone, certaines conclusions majeures étaient que l'adsorption était de plus en plus dominée par la nature hétérogène de la surface à des pressions plus faibles et de plus en plus dominée par la taille des pores aux pressions plus élevées. Les deux chapitres discutent de l'adsorption d'air ainsi que des idées telles que l'influence de la conductivité thermique du gaz dans les pores en ce qui concerne l'adsorption.
Style APA, Harvard, Vancouver, ISO itp.
8

Grills, Romy [Verfasser], Johannes [Akademischer Betreuer] Heitmann, Johannes [Gutachter] Heitmann i Edwin [Gutachter] Kroke. "Aminopolysiloxane-coated thin-film bulk acoustic resonators for selective room temperature CO2 sensing / Romy Grills ; Gutachter: Johannes Heitmann, Edwin Kroke ; Betreuer: Johannes Heitmann". Freiberg : Technische Universität Bergakademie Freiberg, 2019. http://d-nb.info/1221139304/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Queiroz, Adriana Coêlho. "Oxidação eletroquímica de etanol em temperatura ambiente e intermediária: estudo quantitativo das vias reacionais por espectrometria de massas on-line". Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/75/75134/tde-23052016-104108/.

Pełny tekst źródła
Streszczenie:
Na primeira parte do trabalho, foram investigados materiais ativos para eletro-oxidar etanol e acetaldeído seletivos para a rota C2 (Carbono 2) e, também, ativos para eletro-oxidar hidrogênio molecular, visando a aplicação em células a combustível de hidrogênio indireto. Neste tipo de célula, um processador de combustível externo desidrogena o etanol e os produtos desta reação, contendo H2, acetaldeído e, possivelmente, etanol residual, são direcionados para alimentar o ânodo. Neste sentido, o eletrocatalisador anódico pode ser ativo para a eletro-oxidação de etanol residual, bem como acetaldeído, mas este deve catalisar a reação via C2 com o objetivo de evitar a formação de espécies que envenenam a superfície catalítica (CO ou CHx), ou seja, a ligação C-C deve permanecer intacta. Os eletrocatalisadores bimetálicos foram formados por M/Pt/C (onde M = W, Ru ou Sn) e os produtos reacionais foram analisados por DEMS On-line. Os resultados mostraram que Ru/Pt/C e Sn/Pt/C apresentaram maiores taxas de reação global, no entanto, eles não foram seletivos. Por outro lado, W2/Pt3/C foi mais seletivo para a rota C2, dada a não formação de CH4 e CO2. Além disso, este material também foi ativo e estável para a eletro-oxidação de H2, mesmo na presença de acetaldeído, o que o torna um potencial catalisador para aplicação no ânodo de células a combustível de hidrogênio indireto. Na segunda parte do trabalho, o objetivo foi relacionado com o estudo de eletrocatalisadores seletivos para a rota C1 (Carbono 1). A oxidação eletroquímica do etanol e de seus produtos reacionais foram investigados por DEMS on-line em temperatura ambiente e intermediária (245oC). Para temperatura ambiente, utilizou-se solução aquosa de ácido sulfúrico (H2SO4) e, para temperatura intermediária, utilizou-se ácido sólido (CsH2PO4) como eletrólito. Os eletrocatalisadores investigados foram formados por SnOxRuOx-Pt/C e Pt/C. Em temperatura ambiente, os resultados de polarização potenciodinâmica mostraram uma maior atividade eletrocatalítica para o material SnOxRuOx-Pt/C, com eficiência de corrente para formação de CO2 de 15,6% contra 15,2% para Pt/C, sob condições estagnantes, sem controle por transporte de massa. O stripping de resíduos reacionais, após a eletro-oxidação de etanol bulk, sob condições de fluxo, mostraram o acúmulo de espécies com 1 átomo de carbono (CO e CHx) que causam o bloqueio dos sítios ativos e são oxidadas eletroquimicamente somente em mais altos potenciais (ca. 1,0 V). Por outro lado, as curvas de polarização a 245oC mostraram maiores valores de eficiências de correntes para formação de CO2 (45% para Pt/C em ambos potenciais 0,5 V e 0,8 V contra 36% e 50% para SnOxRuOx-Pt/C em 0,5 V e 0,8 V respectivamente) quando comparado com os valores obtidos em temperatura ambiente, mas com atividades similares para SnOxRuOx-Pt/C e Pt/C. Para ambos os eletrocatalisadores, os estudos de espectrometria de massas a 245oC evidenciaram que as rotas eletroquímicas ocorrem em paralelo com rotas puramente químicas, envolvendo catálise heterogênea, de decomposição do etanol, produzindo H2 e CO2 como produtos majoritários.
In the first part of this study were investigated active materials to electro-oxidize ethanol and acetaldehyde selective for the C2 route (Carbon 2), besides active to electro-oxidize molecular hydrogen, in order to apply into indirect hydrogen fuel cells. In this type of cell, ethanol can be dehydrogenated in the external fuel processor and the products generated in this reaction, containing H2, acetaldehyde and, possibly, unreacted ethanol are used to feed the fuel cell anode. Therefore, the anode electrocatalyst has to be active to electro-oxidize residual ethanol and acetaldehyde, however, it has to catalyze the reaction via C2 route aiming to avoid the species formation that poison the catalyst surface (CO and CHx), in the other words, the C-C bond should remain intact. The bimetallic electrocatalysts were formed by W, Ru and Sn-modified Pt nanoparticles. The reaction products were followed by on-line differential electrochemical mass spectrometry (DEMS) experiments. The results showed that Ru/Pt/C and Sn/Pt/C presented higher overall reaction rate when compared to the other studied materials, however, they were non-selective. On the other hand, W/Pt/C with high W content was more selective to the C2 route, evidenced by the absence of the DEMS signals for molecules with one carbon atom such as CH4 and CO2. Additionally, this material was active and stable for H2 electro-oxidation even in the acetaldehyde presence, what turns it into a potential electrocatalyst for application in the anode of indirect hydrogen fuel cells. In the second part of this work, we investigated conditions and electrocatalysts selective to the C1 route. The ethanol electro-oxidation and its reaction products were investigated by on-line DEMS at room and intermediate temperature. At room, and intermediate temperature (245oC), the electrolytes were aqueous sulfuric acid and solid-state acid (CsH2PO4), respectively. The catalysts investigated were SnOxRuOx-Pt/C and Pt/C. The results of potentiodynamic polarizations at room temperature showed much higher electrocatalytic activity for the SnOxRuOx-Pt/C material, with current efficiency for CO2 formation of 15.6% against 15.2% for Pt/C under stagnant conditions. The reaction residues stripping after the ethanol electro-oxidation, under continuous flow conditions, showed the accumulation of species containing 1 carbon atom (CO and CHx), which are oxidized just at high potentials (ca. 1.0 V) and they cause the obstruction of the active sites. On the other hand, the polarization curves at 245oC showed higher values of current efficiencies (45% for Pt/C for both potentials 0.5 V and 0.8 V against 36% and 50% to SnOxRuOx-Pt/C at 0.5 V and 0.8 V respectively) for the CO2 formation than at ambient condition, however, with similar activities for SnOxRuOx-Pt/C and Pt/C. For both electrocatalysts, in parallel with the electrochemical pathways, heterogeneous chemical catalysis of ethanol decomposition also takes place, producing H2 and CO2, as major products.
Style APA, Harvard, Vancouver, ISO itp.
10

Zhang, Lin. "Photoelectrocatalytic CO2 conversion in ionic liquid/aqueous mixture solution studied by scanning electrochemical microscopy". Thesis, Sorbonne université, 2020. https://accesdistant.sorbonne-universite.fr/login?url=http://theses-intra.upmc.fr/modules/resources/download/theses/2020SORUS122.pdf.

Pełny tekst źródła
Streszczenie:
Cette thèse concerne l’étude de la réaction photoélectrochimique de réduction du CO2 (PEC CO2RR) sur le semi-conducteur de type p CuCo2O4 en abordant le rôle cocatalytique des RTIL à base d'imidazolium par microscopie photoélectrochimique à balayage (SPECM). Le CuCo2O4 a été étudié dans différents électrolytes supports, notamment une solution aqueuse, une solution de mélange binaire (25 vol.% [C2mim][BF4]/H2O et 25 vol.% [C4mim][BF4]/H2O) et des liquides ioniques pur pour explorer par SPECM le rôle des RTIL dans les performances des PEC. Un courant de photoréduction significativement amélioré sous l'éclairage UV-vis et visible est obtenu dans une solution à 25 vol.% [C2mim][BF4]/H2O. Seul le CO généré par la PEC CO2RR a été détecté sur une fibre optique à double sonde - ultra-microélectrode (OF-UME) développée au laboratoire et sur une électrolyse en volume sous illumination. La formation de CO à des potentiels plus positifs que la valeur thermodynamique est rapportée ici et il est clairement indiqué que la réduction directe du CO2 à la surface de l'électrode n'est pas le mécanisme. Un schéma de réaction possible pour la PEC CO2RR par l'intermédiaire de [C2mim]+ est proposé. Ainsi, nos résultats ont démontré pour la première fois le rôle cocatalytique de [C2mim]+ pour le PEC CO2RR. En outre, la CO2RR électrochimique a également été étudiée sur divers catalyseurs de métaux de transition, d'azote et de carbone (M–N–Cs). 25%Fe25%Co–N–C a montré la meilleure performance parmi les M–N–Cs étudiés. La présence de sites Co a fourni un effet synergique pour la génération de microcubes distribués riches en Fe, qui agissent comme des sites actifs dans la CO2RR électrochimique
This thesis studies photoelectrochemical CO2 reduction reaction (PEC CO2RR) on p-type semiconductor CuCo2O4 addressing the cocatalytic role of imidazolium based RTILs by scanning photoelectrochemical microscopy (SPECM). CuCo2O4 was studied in different solvent supporting electrolyte systems including: aqueous solution (0.1 M KHCO3 and 0.1 M Na2SO4), binary mixture solution (25 vol.% [C2mim][BF4]/H2O and 25 vol.% [C4mim][BF4]/H2O) and pure RTILs ([C2mim][BF4], [C4mim][BF4]) to explore by SPECM the role of RTILs in CuCo2O4 semiconductor PEC performance. Significantly enhanced photoreduction current under both UV-vis and visible light illumination is reported in 25 vol.% [C2mim][BF4]/H2O solution. Only CO generated from PEC CO2RR was detected using an in-situ detection method based on a home-made dual tip optical fiber-ultramicroelectrode (OF-UME) and from bulk electrolysis under illumination. The formation of CO at potentials more positive than the thermodynamic value clearly points out that direct CO2 reduction on the electrode surface is not the mechanism. A possible reaction scheme for the PEC CO2RR mediated by [C2mim]+ is proposed. Thus, our results have demonstrated for the first time the cocatalytic role of [C2mim]+ for the PEC CO2RR. In addition, electrochemical CO2RR has also been studied on various synthesized transition metal–nitrogen–carbon catalysts (M–N–Cs) by rotating disk electrode. 25%Fe25%Co–N–C exhibited the best performance among the studied M–N–Cs in this thesis. The presence of Co sites in that catalyst provided synergic effect for the generation of distributed Fe-rich microcubes, which act as active sites in electrochemical CO2RR
Style APA, Harvard, Vancouver, ISO itp.
11

Hoffmann, Herbert C., Silvia Paasch, Philipp Müller, Irena Senkovska, Mohan Padmanaban, Frank Glorius, Stefan Kaskel i Eike Brunner. "Chiral recognition in metal–organic frameworks studied by solid-state NMR spectroscopy using chiral solvating agents". Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-138884.

Pełny tekst źródła
Streszczenie:
Recently, we have described the synthesis of chiral metal–organic frameworks iPr-ChirUMCM-1 and Bn-ChirUMCM-1 and their use in enantioselective separation. Here, we demonstrate for the first time the use of a chiral solvating agent (1-phenyl-2,2,2-trifluoroethanol, TFPE) for chiral recognition in iPr-ChirUMCM-1 and Bn-ChirUMCM-1 by means of solid-state13C NMR spectroscopy
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich
Style APA, Harvard, Vancouver, ISO itp.
12

Hoffmann, Herbert C., Silvia Paasch, Philipp Müller, Irena Senkovska, Mohan Padmanaban, Frank Glorius, Stefan Kaskel i Eike Brunner. "Chiral recognition in metal–organic frameworks studied by solid-state NMR spectroscopy using chiral solvating agents". Royal Society of Chemistry, 2012. https://tud.qucosa.de/id/qucosa%3A27789.

Pełny tekst źródła
Streszczenie:
Recently, we have described the synthesis of chiral metal–organic frameworks iPr-ChirUMCM-1 and Bn-ChirUMCM-1 and their use in enantioselective separation. Here, we demonstrate for the first time the use of a chiral solvating agent (1-phenyl-2,2,2-trifluoroethanol, TFPE) for chiral recognition in iPr-ChirUMCM-1 and Bn-ChirUMCM-1 by means of solid-state13C NMR spectroscopy.
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
Style APA, Harvard, Vancouver, ISO itp.
13

Molloy, John Leo. "Detection of metal vapor atoms in bubbles at room temperature". Thesis, 2006. http://hdl.handle.net/2152/3458.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Liu, Xiu-Mi, i 劉修米. "Room Temperature Fast Growth of Zinc Oxide Nanostructures with CO2 Laser Heating". Thesis, 2009. http://ndltd.ncl.edu.tw/handle/07418053738897219808.

Pełny tekst źródła
Streszczenie:
碩士
國立臺灣海洋大學
光電科學研究所
98
ZnO nanostructures with different morphology have been successfully and rapidly synthesized in large quantities from a ZnO ceramic bar by CO2 laser direct heating the bar under air ambient. The average growth rate of as-grown ZnO nanostructures exceeds 15 m s-1. The morphology, structure and optical properties of as-grown ZnO nanostructures were further investigated by filed-emission scanning electron microscope (FE-SEM), high-resolution transmission electron microscope (HR-TEM) attached with an energy dispersive X-ray spectroscopy (EDX) system, X-ray diffractometer (XRD) with CuKα as the incident radiation, room-temperature photoluminescence (RT-PL) measurement with He-Cd laser line of 352 nm as an excitation source. Typical FE-SEM images of some different shapes of ZnO nanostructures, such as tubular whiskers, needle-like nanorods, similar tetrapod-like structures, and sword-like rod bundles with sharp tips were found on zinc oxide sheet after exposure to CO2 laser in less than 5s. Structural analysis showed that the as-grown ZnO nanostructures were single-crystal hexagonal wurzite structure in nature with single-phase ZnO and preferentially grown along the [0001] direction. Quantitative analysis of the EDS spectrum for an individual ZnO nanorod showed that the nanorods consist of Zn and O in an atomic composition ratios of approximately 1:1. The room temperature photoluminescence spectra showed a ultra-violet (UV) emission at 3.19 eV and a green emission at 2.5 eV. The UV emission and green emission bands were attributed to near band-edge transition and radial combination of a singly ionized oxygen vacancy with a photo-induced hole, respectively. Finally, we compared our as-grown products with the similar nanostructures in the literature and possible growth process of different ZnO nanostructures was discussed.
Style APA, Harvard, Vancouver, ISO itp.
15

Grills, Romy. "Aminopolysiloxane-coated thin-film bulk acoustic resonators for selective room temperature CO2 sensing". 2018. https://tubaf.qucosa.de/id/qucosa%3A32643.

Pełny tekst źródła
Streszczenie:
Small and affordable CO2 sensors are in high demand for modern applications, such as smart buildings, smartphones, electrical cars or medicine. The thin-film bulk acoustic resonator (FBAR) presents a promising platform to fulfil these demands by functionalising its surface with materials that reversibly interact with CO2. In this thesis, aminopolysiloxane-coated FBARs are prepared and analysed regarding their CO2-sensing performance. It is found that they can reach high CO2 sensitivity with resolutions up to 50 ppm in a dynamic range between 400 ppm and 5000 ppm. It is also shown that common cross-sensitivities, such as changing humidity, can be separated from the CO2 signal. These are promising results on the way to develop a new generation of CO2 sensors. However, it is also found that the sensor sensitivity decreases over time. Analytical examinations show that the main degradation product in aminopolysiloxanes is urea, which forms preferrably in softer polymers and at temperatures above 80 °C. This degradation is found in all analysed compositions of aminopolysiloxanes that were aged for more than one year showing the stability limitations of this sensor concept.:1 Introduction 9 1.1 Motivation for new CO2 sensors . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2 The FBAR as a high-potential sensor device . . . . . . . . . . . . . . . . . . . 10 1.3 Content of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 Fundamentals 13 2.1 Gas Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.1 De_nition, History and Classi_cation . . . . . . . . . . . . . . . . . . . 13 2.1.2 Gas sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1.3 State-of-the-art CO2 sensors . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2 FBAR Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.1 Acoustic resonator theory . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.2 The Mason Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.3 Sensing theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2.4 Film resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3 CO2-sensitive materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3.1 General Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3.2 Classes of CO2 sorbents . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.3.3 Suitabe materials for the functionalisation of the FBAR . . . . . . . . 35 3 Experimental details 37 3.1 FBAR designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.1.1 Passive FBARs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.1.2 Active FBARs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.2 Gas measurement setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2.1 Passive FBARs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2.2 Active FBARs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3 Development of the sensitive layer . . . . . . . . . . . . . . . . . . . . . . . . 40 3.3.1 Material choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.3.2 Material preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.3.3 Deposition methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.3.4 Annealing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.4 Analytical techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.4.1 Fourier-transform infrared spectroscopy . . . . . . . . . . . . . . . . . 46 3.4.2 Raman spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.4.3 X-ray photoelectron spectroscopy . . . . . . . . . . . . . . . . . . . . . 47 3.4.4 Nuclear magnetic resonance spectroscopy . . . . . . . . . . . . . . . . 47 3.4.5 Acoustic measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4 Results and discussion 49 4.1 FBARs functionalised with ethyl cellulose . . . . . . . . . . . . . . . . . . . . 49 4.1.1 Acoustic characterisation . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.1.2 Humidity sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.1.3 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 6 Contents 4.2 FBARs with aminopolysiloxanes . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.2.1 Acoustic characterisation . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.2.2 Humidity and CO2 sensing . . . . . . . . . . . . . . . . . . . . . . . . 63 4.2.3 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.3 Degradation mechanisms in aminopolysiloxanes . . . . . . . . . . . . . . . . . 69 4.3.1 Stability evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.3.2 Analytical characterisation . . . . . . . . . . . . . . . . . . . . . . . . 70 4.3.3 Degradation hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.4 CO2 sensing with an active FBAR array . . . . . . . . . . . . . . . . . . . . . 82 4.4.1 Presentation of the functionalised sensor chip . . . . . . . . . . . . . . 82 4.4.2 Sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.4.3 Selective Multigassensing . . . . . . . . . . . . . . . . . . . . . . . . . 89 5 Summary 93 6 Outlook 95 7 Appendix 97 7.1 Additional tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 7.2 Additional pictures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Bibliography 103
Style APA, Harvard, Vancouver, ISO itp.
16

Lin, Hsin-mu. "Adsorption of alcohol vapor by sodium chloride aerosol at room temperature an experimental study /". 1992. http://catalog.hathitrust.org/api/volumes/oclc/26103308.html.

Pełny tekst źródła
Streszczenie:
Thesis (M.S.)--University of Wisconsin--Madison, 1992.
Typescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 85-87).
Style APA, Harvard, Vancouver, ISO itp.
17

Raganati, Federica. "CO2 CAPTURE BY TEMPERATURE SWING ADSORPTION IN A SOUND ASSISTED FLUIDIZED BED OF FINE POWDERS". Tesi di dottorato, 2014. http://www.fedoa.unina.it/9652/1/Tesi%20dottorato_Raganati.pdf.

Pełny tekst źródła
Streszczenie:
Adsorption using solid sorbents is recognized to be attractive to complement or replace the current absorption technology for CO2 capture due to its low energy requirement. However, the development of new highly specific CO2 adsorbent is necessary: a solution is represented by fine materials, whose properties can be tuned at a molecular level by means of functionalization processes to tailor their CO2 capture performance. Another point to be addressed is the adoption of an adequate reactor configuration, which can, on one hand, fully exploit the potential and properties of these new-concept adsorbent materials by maximizing the contact between the CO2 molecules and the adsorbent particles, and, on the other hand, improve the heat transfer. In this respect, a fluidized bed could be a good solution, due to larger gas-solid contact efficiency, higher rate of mass and heat transfer and lower pressure drops. In particular, a more suitable reactor configuration is a sound assisted fluidized bed, namely provided with a system for the generation of acoustic vibrations to overcome the high interparticles forces characterizing fine powders. On these bases, the present PhD thesis focuses on the CO2 capture process by temperature swing adsorption on fine porous materials in a sound assisted fluidized bed. In order to perform adsorption/desorption tests, a laboratory scale sound assisted fluidized bed experimental rig has been set up. It is equipped with a system for the sound generation and with a continuous analyzer for the CO2 concentration measurement in the effluent gas stream. For the regeneration tests the reactor is externally heated by an ad-hoc designed heating jacket, provided with a window to allow the fluidization quality to be visually assessed. Both common adsorbent materials, two activated carbons, zeolite HZSM-5 and zeolite 13X, and a highly specific adsorbent material, a metal organic framework HKUST-1, were used. The experimental results show that the application of the sound can improve the fluidization quality as well as the adsorption efficiency (by maximizing the gas-solid contact) of all the selected adsorbent materials in terms of remarkably higher breakthrough time, adsorption capacity, fraction of bed utilized until breakthrough and adsorption rate. The experimental campaign has been also carried out, at ambient temperature and atmospheric pressure, in order to highlight the effect of some operating variables on the adsorption performances, i.e. sound intensity (120-140dB) and frequency (20-300Hz), CO2 partial pressure (0.05-0.15atm) and fluidization velocity (0.1-4.5cm/s). In particular, increasing sound intensities yield better adsorption performances, whereas, sound frequency has a not monotone effect on the fluidization quality and adsorption efficiency. The CO2 capture capacity increases with CO2 partial pressure, coherently with the partial pressure being the thermodynamic driving force of the adsorption process. Finally, the dependence of the breakthrough time on the contact time is linear for the tests performed in ordinary conditions, whereas, it is not monotone for the sound assisted tests. At the end of the experimental campaign, all the investigated adsorbent materials have been compared and their different adsorption behaviours explained on the basis of their textural properties. In particular, it has been found that there is a specific pore size range, 8-12 Å, which is the key factor affecting the adsorption capacity of the studied materials under the investigated operating conditions. Desorption tests have been performed on the materials characterized by the best adsorption performances, the HKUST-1 and one activated carbon at atmospheric pressure. In particular, an extra-situ regeneration strategy (150°C under a vacuum of 50mbar) has been developed to study the stability of HKUST-1 to cyclic adsorption/desorption operations, since HKUST-1 presents problems of thermal stability, limiting the desorption temperature to be used in a temperature swing adsorption process. The results show that HKUST-1 is very stable, keeping its adsorption performances over 10 adsorption/desorption cycles. As regards the activated carbon, two strategy of temperature swing adsorption have been tested in the sound assisted fluidized bed. The first regeneration strategy is an isothermal purge consisting in combining the effect of increasing temperature and decreasing CO2 partial pressure. The second regeneration strategy, heating and purge, consists in separating the thermal effect from the purging one. The application of the sound makes it possible, from one hand, to remarkably increase the desorption rate and, on the other, to significantly enrich the recovered CO2 stream. CO2 recovery and purity have opposing trends: higher desorption times yield a higher CO2 recovery, but lead to a lower CO2 purity of the desorbing stream. The desorption rate is positively affected by both desorption temperature (25-150°C) and N2 purge flow rate (45.2-90.4Nl h-1). The purity of the recovered CO2 stream is increased by increasing desorption temperatures, whereas, it is not affected by change of the N2 purge flow rate since dilution does not depend on the purge flow rate but only on the purge volume. The results obtained show that heating is very effective since 80% of the captured CO2 can be can be recovered with a 100% purity at a bland desorption temperature of 130°C. It is worth noting that for each desorption temperature the heating and purge strategy always makes it possible to enrich the stream of CO2 recovered with respect to the standard purge strategy, the CO2 recovery level being the same. The possibility to use the activated carbon in a cyclic operation has been also assessed: it is very stable, keeping its adsorption performances over 16 adsorption/desorption cycle. Finally, considerations about the energy cost and scale-up of the proposed technology for CO2 capture by temperature swing adsorption have also been reported.
Style APA, Harvard, Vancouver, ISO itp.
18

Lee, Chi-Lin, i 李其霖. "CO2 capture from simulated IGCC with 13X zeolite by a daul-bed Temperature/Vacuum Swing Adsorption". Thesis, 2016. http://ndltd.ncl.edu.tw/handle/91432774641155514406.

Pełny tekst źródła
Streszczenie:
碩士
國立中興大學
環境工程學系所
104
Commercially available spherical 13X zeolite was employed as sorbents for CO2 capture from synthetic gas of cylinder of integrated gasification combined cycle(IGCC) power plant and traditional power plant by a dual-bed temperature/vacuum swing adsorption system. The research included two parts as follows: The first part was the selection of the conditions of adsorption and desorption. The adsorption process was conducted at 30°C, 0 % water content. The desorption process was conducted at 120°C desorption temperature, and the desorption time was 20 min. At this ad/desorption conditions, the results showed that the maximum adsorption working capacity (qw) was 157.2 mg/g. And the regenerative working capacity was 130.2 mg/g. The second part was CO2 capture from synthetic gas of cylinder 35% and 15% as CO2 concentration of IGCC and traditional power plant. The condition of synthetic was controlled at 10 LPM (liter per minute) with 35/15% CO2. The results showed that the average working capacity was 115 mg/g and 86.5 mg/g, and the breakthrough time was 50 and 80 minute. The average daily capture rate of 15 and 35%CO2 are 0.79 kg-CO2/day/kg-13X and 1.07 kg-CO2/day/kg-13X, respectively. According to foregoing results, it reveals that the 13X have better adsorption performance of CO2 under IGCC system as compared to traditional power plant.
Style APA, Harvard, Vancouver, ISO itp.
19

Shih, Yu-Hau, i 施育豪. "Capturing CO2 from water-gas-shift reaction effluent gas by pressure swing adsorption at mid-high temperature". Thesis, 2011. http://ndltd.ncl.edu.tw/handle/90421425462794292334.

Pełny tekst źródła
Streszczenie:
碩士
國立中央大學
化學工程與材料工程研究所
99
An integrated gasification combined cycle (IGCC) is a potential electric power technology that turns coal into synthesis gas, which can be burned to generate power. In this study, pressure swing adsorption (PSA) is utilized to capture CO2 from outlet stream of water-gas-shift reactor of IGCC process at nearly 400C with K2CO3-promoted hydrotalcite adsorbent, avoiding energy loss of capturing CO2 at room temperature, and the purified H2 at 400C is sent to gas turbine for generating electrical power. In this study , we first simulate breakthough curve and desorption curve of K2CO3-promoted hydrotalcite, proving the accuracy of our program that we can simulate adsorption and desorption of K2CO3-promoted hydrotalcite correctly.We also simulate 1-bed 5-step process of CO2/H2 separation utilizing 5A zeolite adsorbent, proving the accuracy of our program. Adsorbent K2CO3-promoted hydrotalcite adsorbs CO2 at mid-high temperature and does not adsorb other gases ,such as CO ,H2 and H2O. Non-moisture inlet condition (water is removed before entering PSA process) and moisture condition is studied in simulation at the 1st stage CO2 PSA , and two PSA processes,1-bed 4-step process and 2-bed 6-step process, are studied to separate CO2 from syngas. 1-bed 4-step PSA process generates better purity of CO2 and 2- bed 6-step PSA process have better recovery of CO2.Both of them could achieve above 90% purity and recovery of CO2. For non-moisture inlet ,the best result of 1-bed 4-step process is with CO2 purity of 98.72%and a recovery of 97.96%, and the best result of 2-bed 6-step process is with CO2 purity of 90.15% and a recovery of 98.98%.For moisture inlet ,the best result of 1-bed 4-step process is with CO2 purity of 99.3%,and a recovery of 97.57%,and the best result of 2-bed 6-step process is with CO2 purity of 93.58% and a recovery of 99.23%. The inlet of the 2nd stage H2 PSA coming from part of the top product of the 1st stage CO2 PSA with moisture inlet is reduced to room temperature to remove water content and to perform H2 purification at room temperature.The main compositions of the 2nd stage inlet gas are CO/H2.We use AC5-KS adsorbent and 2-bed 6-step process to separate CO/H2.It can achieve 99% purity and 93 % recovery of H2.
Style APA, Harvard, Vancouver, ISO itp.
20

CHEN, FEI-HONG, i 陳飛宏. "Simulation of carbon dioxide capture and hydrogen purification in integrated gasification combined cycle by pressure swing adsorption at room temperature". Thesis, 2011. http://ndltd.ncl.edu.tw/handle/81720592955456392450.

Pełny tekst źródła
Streszczenie:
碩士
國立中央大學
化學工程與材料工程研究所
99
Global warming has become more and more serious, which is caused by greenhouse gases. Cutting down the emission of CO2 has already become the major research target in the world. The main sources of CO2 include the processes of generating electric power and producing hydrogen from natural gas and hydrocarbon. The CO2 which comes from coal is generated by gasifier and the water-gas shift reaction step of the process. Pressure swing adsorption can purify hydrogen with high concentration to be used as energy source and recover carbon dioxide to decrease the impact on the greenhouse effect. Pressure swing adsorption is a cyclic process to separate gas mixtures based on the difference of adsorption capacity of each component on adsorbent. This technology consists of gas adsorption at high pressure and desorption at low pressure to produce high-purity product. This study plans to use dual-bed PSA process to separate high purity hydrogen and to capture CO2 from syngas, which contains CO, CO2 and hydrogen, at room temperature. The optimal operating condition is discussed by varying the operating variables, such as feed pressure, length of adsorber and step time. By PSA process, the goal of energy generation and environmental protection could be achieved at the same time.
Style APA, Harvard, Vancouver, ISO itp.
21

Wu, Jo-Yu, i 吳若瑜. "CO2 Capture from Flue Gas of Gasoline Power Generator with 13X zeolite by a Dual-bed Temperature/Vacuum Swing Adsorption". Thesis, 2014. http://ndltd.ncl.edu.tw/handle/54222012626380227547.

Pełny tekst źródła
Streszczenie:
碩士
國立中興大學
環境工程學系所
102
Commercially available spherical 13X zeolite was employed as sorbents for CO2 capture from synthetic gas of cylinder and flue gas of gasoline power generator by a dual-bed temperature/vacuum swing adsorption system. Each column of dual-bed system consisted of cylindrical shell and inner column which was designed to pass through the steam fluid or the cooling water to increase or decrease the temperature of the inner column. The research included two parts as follows: The first part was the selection of the optimum sorbent to capture carbon dioxide. The adsorption process was conducted at 30°C, <4 vol% water content and 15% CO2. The results showed that the maximum adsorption working capacity (qw) was 135.8 mg/g. The second part was CO2 capture from synthetic gas of cylinder and flue gas of gasoliner power generator. The condition of synthetic gas was controlled at 10 LPM (liter per minute) with 15% CO2. The flue gas was first introduced into a pretreatment system to remove volatile organic compounds (VOCs), water, oil gas and particles, and then was delivered into a dual-bed adsorption/desorption system, in which the system flow rate was controlled at 10 LPM with a flue gas containing 11.8±0.3% CO2, 1500-4500 ppmv-CH4 VOCs and<1 ppmv SO2. The adsorption process was conducted at 30°C while the desorption process was conducted at 100°C, 0.6 bar and 20 min. The results indicated that after 50 cycles, the average qw, the AI (adsorption index) and the CO2 removal efficiency (RE) respectively reached 85.1 mg/g, 92.4% and 99.6% with synthetic gas and 74.5 mg/g, 75.1% and 99.1% with flue gas. This reveals that the 13X zeolite with dual-bed temperature/vacuum swing system has feasibility on CO2 capture from flue gas of gasoline power generator.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii