Gotowa bibliografia na temat „Robust Human Detection”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Robust Human Detection”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Robust Human Detection"
GUAN, F., L. Y. LI, S. S. GE i A. P. LOH. "ROBUST HUMAN DETECTION AND IDENTIFICATION BY USING STEREO AND THERMAL IMAGES IN HUMAN ROBOT INTERACTION". International Journal of Information Acquisition 04, nr 02 (czerwiec 2007): 161–83. http://dx.doi.org/10.1142/s0219878907001241.
Pełny tekst źródłaIwata, Kenji, Yutaka Satoh, Ikushi Yoda i Katsuhiko Sakaue. "Hybrid Camera Surveillance System Using Robust Human Detection". IEEJ Transactions on Electronics, Information and Systems 127, nr 6 (2007): 837–43. http://dx.doi.org/10.1541/ieejeiss.127.837.
Pełny tekst źródłaAl-Hazaimeh, Obaida M., Malek Al-Nawashi i Mohamad Saraee. "Geometrical-based approach for robust human image detection". Multimedia Tools and Applications 78, nr 6 (4.08.2018): 7029–53. http://dx.doi.org/10.1007/s11042-018-6401-y.
Pełny tekst źródłaChowdhury, Mozammel, Junbin Gao i Rafiqul Islam. "Robust human detection and localization in security applications". Concurrency and Computation: Practice and Experience 29, nr 23 (22.10.2016): e3977. http://dx.doi.org/10.1002/cpe.3977.
Pełny tekst źródłaIwata, Kenji, Yutaka Satoh, Ikushi Yoda i Katsuhiko Sakaue. "Hybrid camera surveillance system using robust human detection". Electronics and Communications in Japan 91, nr 11 (listopad 2008): 11–18. http://dx.doi.org/10.1002/ecj.10006.
Pełny tekst źródłaStörring, Moritz, Hans J. Andersen i Erik Granum. "A multispectral approach to robust human skin detection". Conference on Colour in Graphics, Imaging, and Vision 2, nr 1 (1.01.2004): 110–15. http://dx.doi.org/10.2352/cgiv.2004.2.1.art00024.
Pełny tekst źródłaWooJang, Seok, i Siwoo Byun. "Facial region detection robust to changing backgrounds". International Journal of Engineering & Technology 7, nr 2.12 (3.04.2018): 25. http://dx.doi.org/10.14419/ijet.v7i2.12.11028.
Pełny tekst źródłaZhong, Xubin, Changxing Ding, Xian Qu i Dacheng Tao. "Polysemy Deciphering Network for Robust Human–Object Interaction Detection". International Journal of Computer Vision 129, nr 6 (19.04.2021): 1910–29. http://dx.doi.org/10.1007/s11263-021-01458-8.
Pełny tekst źródłaCHO, SANG-HO, TAEWAN KIM i DAIJIN KIM. "POSE ROBUST HUMAN DETECTION IN DEPTH IMAGES USING MULTIPLY-ORIENTED 2D ELLIPTICAL FILTERS". International Journal of Pattern Recognition and Artificial Intelligence 24, nr 05 (sierpień 2010): 691–717. http://dx.doi.org/10.1142/s0218001410008135.
Pełny tekst źródłaSRISUK, SANUN, WERASAK KURUTACH i KONGSAK LIMPITIKEAT. "A NOVEL APPROACH FOR ROBUST, FAST AND ACCURATE FACE DETECTION". International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 09, nr 06 (grudzień 2001): 769–79. http://dx.doi.org/10.1142/s0218488501001228.
Pełny tekst źródłaRozprawy doktorskie na temat "Robust Human Detection"
Li, Ying. "Efficient and Robust Video Understanding for Human-robot Interaction and Detection". The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu152207324664654.
Pełny tekst źródłaLeu, Adrian [Verfasser]. "Robust Real-time Vision-based Human Detection and Tracking / Adrian Leu". Aachen : Shaker, 2014. http://d-nb.info/1060622432/34.
Pełny tekst źródłaLeu, Adrian [Verfasser], Axel [Akademischer Betreuer] Gräser i Udo [Akademischer Betreuer] Frese. "Robust Real-time Vision-based Human Detection and Tracking / Adrian Leu. Gutachter: Udo Frese. Betreuer: Axel Gräser". Bremen : Staats- und Universitätsbibliothek Bremen, 2014. http://d-nb.info/1072226340/34.
Pełny tekst źródłaTerzi, Matteo. "Learning interpretable representations for classification, anomaly detection, human gesture and action recognition". Doctoral thesis, Università degli studi di Padova, 2019. http://hdl.handle.net/11577/3423183.
Pełny tekst źródłaZhu, Youding. "Model-Based Human Pose Estimation with Spatio-Temporal Inferencing". The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1242752509.
Pełny tekst źródłaTasaki, Tsuyoshi. "People Detection based on Points Tracked by an Omnidirectional Camera and Interaction Distance for Service Robots System". 京都大学 (Kyoto University), 2013. http://hdl.handle.net/2433/180473.
Pełny tekst źródłaYi, Fei. "Robust eye coding mechanisms in humans during face detection". Thesis, University of Glasgow, 2018. http://theses.gla.ac.uk/31011/.
Pełny tekst źródłaAlanenpää, Madelene. "Gaze detection in human-robot interaction". Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-428387.
Pełny tekst źródłaAntonucci, Alessandro. "Socially aware robot navigation". Doctoral thesis, Università degli studi di Trento, 2022. https://hdl.handle.net/11572/356142.
Pełny tekst źródłaBriquet-Kerestedjian, Nolwenn. "Impact detection and classification for safe physical Human-Robot Interaction under uncertainties". Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLC038/document.
Pełny tekst źródłaThe present thesis aims to develop an efficient strategy for impact detection and classification in the presence of modeling uncertainties of the robot and its environment and using a minimum number of sensors, in particular in the absence of force/torque sensor.The first part of the thesis deals with the detection of an impact that can occur at any location along the robot arm and at any moment during the robot trajectory. Impact detection methods are commonly based on a dynamic model of the system, making them subject to the trade-off between sensitivity of detection and robustness to modeling uncertainties. In this respect, a quantitative methodology has first been developed to make explicit the contribution of the errors induced by model uncertainties. This methodology has been applied to various detection strategies, based either on a direct estimate of the external torque or using disturbance observers, in the perfectly rigid case or in the elastic-joint case. A comparison of the type and structure of the errors involved and their consequences on the impact detection has been deduced. In a second step, novel impact detection strategies have been designed: the dynamic effects of the impacts are isolated by determining the maximal error range due to modeling uncertainties using a stochastic approach.Once the impact has been detected and in order to trigger the most appropriate post-impact robot reaction, the second part of the thesis focuses on the classification step. In particular, the distinction between an intentional contact (the human operator intentionally interacts with the robot, for example to reconfigure the task) and an undesired contact (a human subject accidentally runs into the robot), as well as the localization of the contact on the robot, is investigated using supervised learning techniques and more specifically feedforward neural networks. The challenge of generalizing to several human subjects and robot trajectories has been investigated
Książki na temat "Robust Human Detection"
The Lost Symbol. Wyd. 2. London: Corgi Books, 2013.
Znajdź pełny tekst źródłaBrown, Dan. The Lost Symbol: A novel. New York, USA: Doubleday, 2009.
Znajdź pełny tekst źródłaBrown, Dan. El símbolo perdido. Barcelona: Planeta, 2017.
Znajdź pełny tekst źródłaBrown, Dan. Le symbole perdu: Roman. Paris: JC Lattes, 2009.
Znajdź pełny tekst źródłaBrown, Dan. The Lost Symbol. New York, USA: Random House Large Print, 2009.
Znajdź pełny tekst źródłaBrown, Dan. Rosuto shinboru. Tōkyō: Kadokawa Shoten, 2010.
Znajdź pełny tekst źródłaBrown, Dan. The Lost Symbol. London: Bantam Press, 2009.
Znajdź pełny tekst źródłaBrown, Dan. Il simbolo perduto. Milano: Mondadori, 2009.
Znajdź pełny tekst źródłaBrown, Dan. Le Symbole Perdu. Paris: JC Lattès, 2009.
Znajdź pełny tekst źródłaBrown, Dan. Utrachennyĭ simvol: Roman. Moskva: AST, 2010.
Znajdź pełny tekst źródłaCzęści książek na temat "Robust Human Detection"
Liu, Pengfei, Xue Zhou i Shibin Cai. "Omega-Shape Feature Learning for Robust Human Detection". W Communications in Computer and Information Science, 290–303. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-3002-4_25.
Pełny tekst źródłaLi, Tianshuo, Yanwei Pang, Jing Pan i Changshu Liu. "Weighted Deformable Part Model for Robust Human Detection". W Intelligent Computing Theory, 764–75. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09333-8_83.
Pełny tekst źródłaLi, Haojie, Fuming Sun i Yue Guan. "Robust Detection and Localization of Human Action in Video". W Lecture Notes in Computer Science, 263–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35728-2_25.
Pełny tekst źródłaSchwartz, William Robson, Raghuraman Gopalan, Rama Chellappa i Larry S. Davis. "Robust Human Detection under Occlusion by Integrating Face and Person Detectors". W Advances in Biometrics, 970–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01793-3_98.
Pełny tekst źródłaMikolajczyk, Krystian, Cordelia Schmid i Andrew Zisserman. "Human Detection Based on a Probabilistic Assembly of Robust Part Detectors". W Lecture Notes in Computer Science, 69–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-24670-1_6.
Pełny tekst źródłaBhalerao, Shailesh Vitthalrao, i Ram Bilas Pachori. "Automatic Detection of Motor Imagery EEG Signals Using Swarm Decomposition for Robust BCI Systems". W Human-Machine Interface Technology Advancements and Applications, 35–64. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003326830-3.
Pełny tekst źródłaPham-Ngoc, Phuong-Trinh, Tae-Ho Kim i Kang-Hyun Jo. "Robust Human Face Detection for Moving Pictures Based on Cascade-Typed Hybrid Classifier". W Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence, 1110–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-74205-0_115.
Pełny tekst źródłaIwata, Kenji, Yutaka Satoh, Ikushi Yoda i Katsuhiko Sakaue. "Hybrid Camera Surveillance System by Using Stereo Omni-directional System and Robust Human Detection". W Advances in Image and Video Technology, 611–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11949534_61.
Pełny tekst źródłaYan Shan, Ang. "DNA Split Proximity Circuit for Visualizing Cell Surface Receptor Clustering—A Case Study Using Human Epidermal Growth Factor Receptor Family". W Engineering a Robust DNA Circuit for the Direct Detection of Biomolecular Interactions, 143–56. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2188-7_8.
Pełny tekst źródłaSaad, Alia, Jonathan Liebers, Stefan Schneegass i Uwe Gruenefeld. "“They see me scrollin”—Lessons Learned from Investigating Shoulder Surfing Behavior and Attack Mitigation Strategies". W Human Factors in Privacy Research, 199–218. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-28643-8_10.
Pełny tekst źródłaStreszczenia konferencji na temat "Robust Human Detection"
Hidai, Ken-ichi, T. Kanamori, Hiroshi Mizoguchi, Kazuyuki Hiraoka, Masaru Tanaka, Takaomi Shigehara i Taketoshi Mishima. "Robust face detection for human interactive mobile robot". W Intelligent Systems and Smart Manufacturing, redaktorzy Howie M. Choset, Douglas W. Gage i Matthew R. Stein. SPIE, 2001. http://dx.doi.org/10.1117/12.417299.
Pełny tekst źródłaRaviteja, Thaluru, Srikrishna Karanam i Dinesh Reddy V. Yeduguru. "A robust human face detection algorithm". W Fourth International Conference on Machine Vision (ICMV 11), redaktorzy Zhu Zeng i Yuting Li. SPIE, 2012. http://dx.doi.org/10.1117/12.920068.
Pełny tekst źródłaYoon, Hosub, Dohyung Kim, Suyoung Chi i Youngjo Cho. "A robust human head detection method for human tracking". W 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2006. http://dx.doi.org/10.1109/iros.2006.282159.
Pełny tekst źródłaMartinez-Martin, Ester, i Angel P. del Pobil. "Robust Motion Detection and Tracking for Human-Robot Interaction". W HRI '17: ACM/IEEE International Conference on Human-Robot Interaction. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3029798.3029799.
Pełny tekst źródłaZhang, Li, i Xiangxu Meng. "Enhanced Robust Vortex Detection". W 2012 4th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC). IEEE, 2012. http://dx.doi.org/10.1109/ihmsc.2012.149.
Pełny tekst źródłaBell, Amy E. "Robust feature vector for efficient human detection". W 2013 IEEE Applied Imagery Pattern Recognition Workshop: Sensing for Control and Augmentation (AIPR 2013). IEEE, 2013. http://dx.doi.org/10.1109/aipr.2013.6749310.
Pełny tekst źródłaJianwei Niu, Xiaoke Zhao, Muhammad Ali Abdul Aziz, Jiangwei Li, Kongqiao Wang i Aimin Hao. "Human hand detection using robust local descriptors". W 2013 IEEE International Conference on Multimedia and Expo Workshops (ICMEW). IEEE, 2013. http://dx.doi.org/10.1109/icmew.2013.6618239.
Pełny tekst źródła"ROBUST HUMAN SKIN DETECTION IN COMPLEX ENVIRONMENTS". W International Conference on Computer Vision Theory and Applications. SciTePress - Science and and Technology Publications, 2006. http://dx.doi.org/10.5220/0001376300270034.
Pełny tekst źródłaLi, Liyuan, Jerry Kah Eng Hoe, Shuicheng Yan i Xinguo Yu. "ML-fusion based multi-model human detection and tracking for robust human-robot interfaces". W 2009 Workshop on Applications of Computer Vision (WACV). IEEE, 2009. http://dx.doi.org/10.1109/wacv.2009.5403083.
Pełny tekst źródłaWang, Yijing, Lei Zhang, Zhiqiang Zuo i Xiaoqiang Cheng. "Head-Body Correlation for Robust Crowd Human Detection". W 2021 40th Chinese Control Conference (CCC). IEEE, 2021. http://dx.doi.org/10.23919/ccc52363.2021.9550747.
Pełny tekst źródłaRaporty organizacyjne na temat "Robust Human Detection"
Asari, Vijayan, Paheding Sidike, Binu Nair, Saibabu Arigela, Varun Santhaseelan i Chen Cui. PR-433-133700-R01 Pipeline Right-of-Way Automated Threat Detection by Advanced Image Analysis. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), grudzień 2015. http://dx.doi.org/10.55274/r0010891.
Pełny tekst źródłaDouglas, Thomas A., Christopher A. Hiemstra, Stephanie P. Saari, Kevin L. Bjella, Seth W. Campbell, M. Torre Jorgenson, Dana R. N. Brown i Anna K. Liljedahl. Degrading Permafrost Mapped with Electrical Resistivity Tomography, Airborne Imagery and LiDAR, and Seasonal Thaw Measurements. U.S. Army Engineer Research and Development Center, lipiec 2021. http://dx.doi.org/10.21079/11681/41185.
Pełny tekst źródłaD’Agostino, Martin, Nigel Cook, Liam O’Connor, Annette Sansom, Dima Semaan, Anne Wood, Sue Keenan i Linda Scobie. Optimising extraction and RT-qPCR-based detection of hepatitis E virus (HEV) from pork meat and products. Food Standards Agency, lipiec 2023. http://dx.doi.org/10.46756/sci.fsa.ylv958.
Pełny tekst źródła