Artykuły w czasopismach na temat „RNN NETWORK”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „RNN NETWORK”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Yin, Qiwei, Ruixun Zhang i XiuLi Shao. "CNN and RNN mixed model for image classification". MATEC Web of Conferences 277 (2019): 02001. http://dx.doi.org/10.1051/matecconf/201927702001.
Pełny tekst źródłaTridarma, Panggih, i Sukmawati Nur Endah. "Pengenalan Ucapan Bahasa Indonesia Menggunakan MFCC dan Recurrent Neural Network". JURNAL MASYARAKAT INFORMATIKA 11, nr 2 (17.11.2020): 36–44. http://dx.doi.org/10.14710/jmasif.11.2.34874.
Pełny tekst źródłaMa, Qianli, Zhenxi Lin, Enhuan Chen i Garrison Cottrell. "Temporal Pyramid Recurrent Neural Network". Proceedings of the AAAI Conference on Artificial Intelligence 34, nr 04 (3.04.2020): 5061–68. http://dx.doi.org/10.1609/aaai.v34i04.5947.
Pełny tekst źródłaMosavat, Majid, i Guido Montorsi. "Single-Frequency Network Terrestrial Broadcasting with 5GNR Numerology Using Recurrent Neural Network". Electronics 11, nr 19 (29.09.2022): 3130. http://dx.doi.org/10.3390/electronics11193130.
Pełny tekst źródłaDu, Xiuli, Xiaohui Ding i Fan Tao. "Network Security Situation Prediction Based on Optimized Clock-Cycle Recurrent Neural Network for Sensor-Enabled Networks". Sensors 23, nr 13 (1.07.2023): 6087. http://dx.doi.org/10.3390/s23136087.
Pełny tekst źródłaChoi, Seongjin, Hwasoo Yeo i Jiwon Kim. "Network-Wide Vehicle Trajectory Prediction in Urban Traffic Networks using Deep Learning". Transportation Research Record: Journal of the Transportation Research Board 2672, nr 45 (7.09.2018): 173–84. http://dx.doi.org/10.1177/0361198118794735.
Pełny tekst źródłaNowak, Mateusz P., i Piotr Pecka. "Routing Algorithms Simulation for Self-Aware SDN". Electronics 11, nr 1 (29.12.2021): 104. http://dx.doi.org/10.3390/electronics11010104.
Pełny tekst źródłaMuhuri, Pramita Sree, Prosenjit Chatterjee, Xiaohong Yuan, Kaushik Roy i Albert Esterline. "Using a Long Short-Term Memory Recurrent Neural Network (LSTM-RNN) to Classify Network Attacks". Information 11, nr 5 (1.05.2020): 243. http://dx.doi.org/10.3390/info11050243.
Pełny tekst źródłaParamasivan, Senthil Kumar. "Deep Learning Based Recurrent Neural Networks to Enhance the Performance of Wind Energy Forecasting: A Review". Revue d'Intelligence Artificielle 35, nr 1 (28.02.2021): 1–10. http://dx.doi.org/10.18280/ria.350101.
Pełny tekst źródłaYan, Jiapeng, Huifang Kong i Zhihong Man. "Recurrent Neural Network-Based Nonlinear Optimization for Braking Control of Electric Vehicles". Energies 15, nr 24 (14.12.2022): 9486. http://dx.doi.org/10.3390/en15249486.
Pełny tekst źródłaZafri Wan Yahaya, Wan Muhammad, Fadhlan Hafizhelmi Kamaru Zaman i Mohd Fuad Abdul Latip. "Prediction of energy consumption using recurrent neural networks (RNN) and nonlinear autoregressive neural network with external input (NARX)". Indonesian Journal of Electrical Engineering and Computer Science 17, nr 3 (1.03.2020): 1215. http://dx.doi.org/10.11591/ijeecs.v17.i3.pp1215-1223.
Pełny tekst źródłaBansal, Bhavana, Aparajita Nanda i Anita Sahoo. "Intelligent Framework With Controlled Behavior for Gene Regulatory Network Reconstruction". International Journal of Information Retrieval Research 12, nr 1 (styczeń 2022): 1–17. http://dx.doi.org/10.4018/ijirr.2022010104.
Pełny tekst źródłaLyu, Shengfei, i Jiaqi Liu. "Convolutional Recurrent Neural Networks for Text Classification". Journal of Database Management 32, nr 4 (październik 2021): 65–82. http://dx.doi.org/10.4018/jdm.2021100105.
Pełny tekst źródłaVinayakumar, R., K. P. Soman i Prabaharan Poornachandran. "Evaluation of Recurrent Neural Network and its Variants for Intrusion Detection System (IDS)". International Journal of Information System Modeling and Design 8, nr 3 (lipiec 2017): 43–63. http://dx.doi.org/10.4018/ijismd.2017070103.
Pełny tekst źródłaPark, Jieun, Dokkyun Yi i Sangmin Ji. "Analysis of Recurrent Neural Network and Predictions". Symmetry 12, nr 4 (13.04.2020): 615. http://dx.doi.org/10.3390/sym12040615.
Pełny tekst źródłaDakwale, Praveen, i Christof Monz. "Convolutional over Recurrent Encoder for Neural Machine Translation". Prague Bulletin of Mathematical Linguistics 108, nr 1 (1.06.2017): 37–48. http://dx.doi.org/10.1515/pralin-2017-0007.
Pełny tekst źródłaYu, Dian, i Shouqian Sun. "A Systematic Exploration of Deep Neural Networks for EDA-Based Emotion Recognition". Information 11, nr 4 (15.04.2020): 212. http://dx.doi.org/10.3390/info11040212.
Pełny tekst źródłaT, Vijayakumar. "NEURAL NETWORK ANALYSIS FOR TUMOR INVESTIGATION AND CANCER PREDICTION". December 2019 2019, nr 02 (18.12.2019): 89–98. http://dx.doi.org/10.36548/jei.2019.2.004.
Pełny tekst źródłaT, Vijayakumar. "NEURAL NETWORK ANALYSIS FOR TUMOR INVESTIGATION AND CANCER PREDICTION". December 2019 2019, nr 02 (18.12.2019): 89–98. http://dx.doi.org/10.36548/jes.2019.2.004.
Pełny tekst źródłaAribowo, Widi. "ELMAN-RECURRENT NEURAL NETWORK FOR LOAD SHEDDING OPTIMIZATION". SINERGI 24, nr 1 (14.01.2020): 29. http://dx.doi.org/10.22441/sinergi.2020.1.005.
Pełny tekst źródłaYoko, Kuncoro, Viny Christanti Mawardi i Janson Hendryli. "SISTEM PERINGKAS OTOMATIS ABSTRAKTIF DENGAN MENGGUNAKAN RECURRENT NEURAL NETWORK". Computatio : Journal of Computer Science and Information Systems 2, nr 1 (22.05.2018): 65. http://dx.doi.org/10.24912/computatio.v2i1.1481.
Pełny tekst źródłaWu, Yijun, i Yonghong Qin. "Machine translation of English speech: Comparison of multiple algorithms". Journal of Intelligent Systems 31, nr 1 (1.01.2022): 159–67. http://dx.doi.org/10.1515/jisys-2022-0005.
Pełny tekst źródłaHazazi, Muhammad Asaduddin, i Agus Sihabuddin. "Extended Kalman Filter In Recurrent Neural Network: USDIDR Forecasting Case Study". IJCCS (Indonesian Journal of Computing and Cybernetics Systems) 13, nr 3 (31.07.2019): 293. http://dx.doi.org/10.22146/ijccs.47802.
Pełny tekst źródłaKamyab, Marjan, Guohua Liu, Abdur Rasool i Michael Adjeisah. "ACR-SA: attention-based deep model through two-channel CNN and Bi-RNN for sentiment analysis". PeerJ Computer Science 8 (17.03.2022): e877. http://dx.doi.org/10.7717/peerj-cs.877.
Pełny tekst źródłaZhu, Zhenshu, Yuming Bo i Changhui Jiang. "A MEMS Gyroscope Noise Suppressing Method Using Neural Architecture Search Neural Network". Mathematical Problems in Engineering 2019 (21.11.2019): 1–9. http://dx.doi.org/10.1155/2019/5491243.
Pełny tekst źródłaSubba, Sanjeev, Nawaraj Paudel i Tej Bahadur Shahi. "Nepali Text Document Classification Using Deep Neural Network". Tribhuvan University Journal 33, nr 1 (30.06.2019): 11–22. http://dx.doi.org/10.3126/tuj.v33i1.28677.
Pełny tekst źródłaWang, Yung-Chung, Yi-Chun Houng, Han-Xuan Chen i Shu-Ming Tseng. "Network Anomaly Intrusion Detection Based on Deep Learning Approach". Sensors 23, nr 4 (15.02.2023): 2171. http://dx.doi.org/10.3390/s23042171.
Pełny tekst źródłaWinanto, Eko Arip, Kurniabudi Kurniabudi, Sharipuddin Sharipuddin, Ibnu Sani Wijaya i Dodi Sandra. "Deteksi Serangan pada Jaringan Kompleks IoT menggunakan Recurrent Neural Network". JURIKOM (Jurnal Riset Komputer) 9, nr 6 (30.12.2022): 1996. http://dx.doi.org/10.30865/jurikom.v9i6.5298.
Pełny tekst źródłaJi, Junjie, Yongzhang Zhou, Qiuming Cheng, Shoujun Jiang i Shiting Liu. "Landslide Susceptibility Mapping Based on Deep Learning Algorithms Using Information Value Analysis Optimization". Land 12, nr 6 (25.05.2023): 1125. http://dx.doi.org/10.3390/land12061125.
Pełny tekst źródłaHardy, N. F., i Dean V. Buonomano. "Encoding Time in Feedforward Trajectories of a Recurrent Neural Network Model". Neural Computation 30, nr 2 (luty 2018): 378–96. http://dx.doi.org/10.1162/neco_a_01041.
Pełny tekst źródłaMohd Ruslan, Muhammad Faridzul Faizal, i Mohd Firdaus Hassan. "Unbalance Failure Recognition Using Recurrent Neural Network". International Journal of Automotive and Mechanical Engineering 19, nr 2 (28.06.2022): 9668–80. http://dx.doi.org/10.15282/ijame.19.2.2022.04.0746.
Pełny tekst źródłaAdeel, Ahsan, Hadi Larijani, Abbas Javed i Ali Ahmadinia. "Impact of Learning Algorithms on Random Neural Network based Optimization for LTE-UL Systems". Network Protocols and Algorithms 7, nr 3 (30.11.2015): 157. http://dx.doi.org/10.5296/npa.v7i3.8295.
Pełny tekst źródłaCheng, Yepeng, Zuren Liu i Yasuhiko Morimoto. "Attention-Based SeriesNet: An Attention-Based Hybrid Neural Network Model for Conditional Time Series Forecasting". Information 11, nr 6 (5.06.2020): 305. http://dx.doi.org/10.3390/info11060305.
Pełny tekst źródłaReddy, Mr G. Sekhar, A. Sahithi, P. Harsha Vardhan i P. Ushasri. "Conversion of Sign Language Video to Text and Speech". International Journal for Research in Applied Science and Engineering Technology 10, nr 5 (31.05.2022): 159–64. http://dx.doi.org/10.22214/ijraset.2022.42078.
Pełny tekst źródłaZhu, Jian-Hua, Musharraf M. Zaman i Scott A. Anderson. "Modeling of soil behavior with a recurrent neural network". Canadian Geotechnical Journal 35, nr 5 (1.10.1998): 858–72. http://dx.doi.org/10.1139/t98-042.
Pełny tekst źródłaRathika, M., P. Sivakumar, K. Ramash Kumar i Ilhan Garip. "Cooperative Communications Based on Deep Learning Using a Recurrent Neural Network in Wireless Communication Networks". Mathematical Problems in Engineering 2022 (21.12.2022): 1–12. http://dx.doi.org/10.1155/2022/1864290.
Pełny tekst źródłaVenturini, M. "Simulation of Compressor Transient Behavior Through Recurrent Neural Network Models". Journal of Turbomachinery 128, nr 3 (1.02.2005): 444–54. http://dx.doi.org/10.1115/1.2183315.
Pełny tekst źródłaLiao, Zhehao. "Comparative analysis between application of transformer and recurrent neural network in speech recognition". Applied and Computational Engineering 6, nr 1 (14.06.2023): 629–34. http://dx.doi.org/10.54254/2755-2721/6/20230879.
Pełny tekst źródłaAlkahtani, Hasan, Theyazn H. H. Aldhyani i Mohammed Al-Yaari. "Adaptive Anomaly Detection Framework Model Objects in Cyberspace". Applied Bionics and Biomechanics 2020 (9.12.2020): 1–14. http://dx.doi.org/10.1155/2020/6660489.
Pełny tekst źródłaJiang, Tingting, i Xiang Gao. "Deep Learning of Subject Context in Ideological and Political Class Based on Recursive Neural Network". Computational Intelligence and Neuroscience 2022 (30.09.2022): 1–8. http://dx.doi.org/10.1155/2022/8437548.
Pełny tekst źródłaAlbahar, Marwan Ali. "Recurrent Neural Network Model Based on a New Regularization Technique for Real-Time Intrusion Detection in SDN Environments". Security and Communication Networks 2019 (18.11.2019): 1–9. http://dx.doi.org/10.1155/2019/8939041.
Pełny tekst źródłaKrishnan, Surenthiran, Pritheega Magalingam i Roslina Ibrahim. "Hybrid deep learning model using recurrent neural network and gated recurrent unit for heart disease prediction". International Journal of Electrical and Computer Engineering (IJECE) 11, nr 6 (1.12.2021): 5467. http://dx.doi.org/10.11591/ijece.v11i6.pp5467-5476.
Pełny tekst źródłaBukhsh, Madiha, Muhammad Saqib Ali, Abdullah Alourani, Khlood Shinan, Muhammad Usman Ashraf, Abdul Jabbar i Weiqiu Chen. "Long Short-Term Memory Recurrent Neural Network Approach for Approximating Roots (Eigen Values) of Transcendental Equation of Cantilever Beam". Applied Sciences 13, nr 5 (23.02.2023): 2887. http://dx.doi.org/10.3390/app13052887.
Pełny tekst źródłaWang, Xintong, i Chuangang Zhao. "A 2D Convolutional Gating Mechanism for Mandarin Streaming Speech Recognition". Information 12, nr 4 (12.04.2021): 165. http://dx.doi.org/10.3390/info12040165.
Pełny tekst źródłaKim, Deageon. "Text Classification Based on Neural Network Fusion". Tehnički glasnik 17, nr 3 (19.07.2023): 359–66. http://dx.doi.org/10.31803/tg-20221228154330.
Pełny tekst źródłaYu, Chih-Chang, i Yufeng (Leon) Wu. "Early Warning System for Online STEM Learning—A Slimmer Approach Using Recurrent Neural Networks". Sustainability 13, nr 22 (11.11.2021): 12461. http://dx.doi.org/10.3390/su132212461.
Pełny tekst źródłaHo, Namgyu, i Yoon-Chul Kim. "Estimation of Cardiac Short Axis Slice Levels with a Cascaded Deep Convolutional and Recurrent Neural Network Model". Tomography 8, nr 6 (14.11.2022): 2749–60. http://dx.doi.org/10.3390/tomography8060229.
Pełny tekst źródłaMargasov, A. O. "Neural ordinary differential equations and their probabilistic extension". Proceedings of the Komi Science Centre of the Ural Division of the Russian Academy of Sciences 6 (2021): 14–19. http://dx.doi.org/10.19110/1994-5655-2021-6-14-19.
Pełny tekst źródłaYang, Fushen, Changshun Du i Lei Huang. "Ensemble Sentiment Analysis Method based on R-CNN and C-RNN with Fusion Gate". International Journal of Computers Communications & Control 14, nr 2 (14.04.2019): 272–85. http://dx.doi.org/10.15837/ijccc.2019.2.3375.
Pełny tekst źródłaKustiyo, Aziz, Mukhlis Mukhlis i Aries Suharso. "Model Recurent Neural Network untuk Peramalan Produksi Tebu Nasional". BINA INSANI ICT JOURNAL 9, nr 1 (28.06.2022): 1. http://dx.doi.org/10.51211/biict.v9i1.1744.
Pełny tekst źródła