Artykuły w czasopismach na temat „RNA”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: RNA.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „RNA”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

OHNO, Hirohisa, i Hirohide SAITO. "RNA/RNP Nanotechnology for Biological Applications". Seibutsu Butsuri 56, nr 1 (2016): 023–26. http://dx.doi.org/10.2142/biophys.56.023.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

SHIROGUCHI, Katsuyuki. "RNA Sequencing". Seibutsu Butsuri 53, nr 6 (2013): 290–94. http://dx.doi.org/10.2142/biophys.53.290.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Shi, Rui-Zhu, Yuan-Qing Pan i Li Xing. "RNA Helicase A Regulates the Replication of RNA Viruses". Viruses 13, nr 3 (25.02.2021): 361. http://dx.doi.org/10.3390/v13030361.

Pełny tekst źródła
Streszczenie:
The RNA helicase A (RHA) is a member of DExH-box helicases and characterized by two double-stranded RNA binding domains at the N-terminus. RHA unwinds double-stranded RNA in vitro and is involved in RNA metabolisms in the cell. RHA is also hijacked by a variety of RNA viruses to facilitate virus replication. Herein, this review will provide an overview of the role of RHA in the replication of RNA viruses.
Style APA, Harvard, Vancouver, ISO itp.
4

Afonin, Kirill A., Mathias Viard, Ioannis Kagiampakis, Christopher L. Case, Marina A. Dobrovolskaia, Jen Hofmann, Ashlee Vrzak i in. "Triggering of RNA Interference with RNA–RNA, RNA–DNA, and DNA–RNA Nanoparticles". ACS Nano 9, nr 1 (18.12.2014): 251–59. http://dx.doi.org/10.1021/nn504508s.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Kim, Hyunjong, i Juhee Ryu. "Mechanism of Circular RNAs and Their Potential as Novel Therapeutic Agents in Retinal Vascular Diseases". Yakhak Hoeji 67, nr 6 (31.12.2023): 325–34. http://dx.doi.org/10.17480/psk.2023.67.6.325.

Pełny tekst źródła
Streszczenie:
Maintaining and preserving visual function became critical in this aging society. The number of patients with retinal vascular disease such as retinopathy of prematurity, age-related macular degeneration, and diabetic retinopathy is gradually increasing due to increased life expectancy, advancements in the technology of delivering premature babies, and complications due to eating habits. To treat these retinal vascular diseases, surgical intervention such as laser photocoagulation and anti-vascular endothelial growth factor (VEGF) drugs can be considered. However, these treatment options are accompanied by various complications and adverse effects. Thus, new treatments focusing on the pathogenesis of retinal vascular disease need to be developed. Various evidences suggest that circular RNA is involved in the pathogenesis of retinal disease. In this article, we discuss about currently used treatments of retinal vascular diseases and the emerging role of circular RNAs in the pathogenesis of retinal vascular diseases. Therefore, understanding the mechanism of circular RNA regulating retinal disease and developing therapeutics using these circular RNAs may offer novel treatment options to cure retinal vascular disease.
Style APA, Harvard, Vancouver, ISO itp.
6

Rajkowitsch, Lukas, Doris Chen, Sabine Stampfl, Katharina Semrad, Christina Waldsich, Oliver Mayer, Michael F. Jantsch, Robert Konrat, Udo Bläsi i Renée Schroeder. "RNA Chaperones, RNA Annealers and RNA Helicases". RNA Biology 4, nr 3 (lipiec 2007): 118–30. http://dx.doi.org/10.4161/rna.4.3.5445.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Sengoku, T., O. Nureki i S. Yokoyama. "Structural basis for RNA translocation by RNA helicase". Seibutsu Butsuri 43, supplement (2003): S98. http://dx.doi.org/10.2142/biophys.43.s98_2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Tang, Lin. "Mapping RNA–RNA interactions". Nature Methods 17, nr 8 (31.07.2020): 760. http://dx.doi.org/10.1038/s41592-020-0922-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Ligoxygakis, P. "RNA that synthesizes RNA". Trends in Genetics 17, nr 7 (1.07.2001): 380. http://dx.doi.org/10.1016/s0168-9525(01)02391-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Ogasawara, Shinzi, i Ai Yamada. "RNA Editing with Viral RNA-Dependent RNA Polymerase". ACS Synthetic Biology 11, nr 1 (3.01.2022): 46–52. http://dx.doi.org/10.1021/acssynbio.1c00332.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Ahlquist, P. "RNA-Dependent RNA Polymerases, Viruses, and RNA Silencing". Science 296, nr 5571 (17.05.2002): 1270–73. http://dx.doi.org/10.1126/science.1069132.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Arnott, Struther, R. Chandrasekaran, R. P. Millane i H. S. Park. "RNA-RNA, DNA-DNA, and DNA-RNA Polymorphism". Biophysical Journal 49, nr 1 (styczeń 1986): 3–5. http://dx.doi.org/10.1016/s0006-3495(86)83568-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Yano, A., i K. Harada. "2P142 Inhibition of RNA-protein interaction by RNA-RNA interaction". Seibutsu Butsuri 45, supplement (2005): S155. http://dx.doi.org/10.2142/biophys.45.s155_2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Taylor, J. P. "RNA That Gets RAN in Neurodegeneration". Science 339, nr 6125 (14.03.2013): 1282–83. http://dx.doi.org/10.1126/science.1236450.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Stackebrandt, Erko, Werner Liesack i Dagmar Witt. "Ribosomal RNA and rDNA sequence analyses". Gene 115, nr 1-2 (czerwiec 1992): 255–60. http://dx.doi.org/10.1016/0378-1119(92)90567-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Zhang, X., D. Wu, L. Chen, X. Li, J. Yang, D. Fan, T. Dong i in. "RAID: a comprehensive resource for human RNA-associated (RNA-RNA/RNA-protein) interaction". RNA 20, nr 7 (6.05.2014): 989–93. http://dx.doi.org/10.1261/rna.044776.114.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Alkan, Can, Emre Karakoç, Joseph H. Nadeau, S. Cenk Sahinalp i Kaizhong Zhang. "RNA–RNA Interaction Prediction and Antisense RNA Target Search". Journal of Computational Biology 13, nr 2 (marzec 2006): 267–82. http://dx.doi.org/10.1089/cmb.2006.13.267.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Newburn, Laura R., i K. Andrew White. "Trans-Acting RNA–RNA Interactions in Segmented RNA Viruses". Viruses 11, nr 8 (14.08.2019): 751. http://dx.doi.org/10.3390/v11080751.

Pełny tekst źródła
Streszczenie:
RNA viruses represent a large and important group of pathogens that infect a broad range of hosts. Segmented RNA viruses are a subclass of this group that encode their genomes in two or more molecules and package all of their RNA segments in a single virus particle. These divided genomes come in different forms, including double-stranded RNA, coding-sense single-stranded RNA, and noncoding single-stranded RNA. Genera that possess these genome types include, respectively, Orbivirus (e.g., Bluetongue virus), Dianthovirus (e.g., Red clover necrotic mosaic virus) and Alphainfluenzavirus (e.g., Influenza A virus). Despite their distinct genomic features and diverse host ranges (i.e., animals, plants, and humans, respectively) each of these viruses uses trans-acting RNA–RNA interactions (tRRIs) to facilitate co-packaging of their segmented genome. The tRRIs occur between different viral genome segments and direct the selective packaging of a complete genome complement. Here we explore the current state of understanding of tRRI-mediated co-packaging in the abovementioned viruses and examine other known and potential functions for this class of RNA–RNA interaction.
Style APA, Harvard, Vancouver, ISO itp.
19

Cazenave, C., i O. C. Uhlenbeck. "RNA template-directed RNA synthesis by T7 RNA polymerase." Proceedings of the National Academy of Sciences 91, nr 15 (19.07.1994): 6972–76. http://dx.doi.org/10.1073/pnas.91.15.6972.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

McGinness, Kathleen E., i Gerald F. Joyce. "RNA-Catalyzed RNA Ligation on an External RNA Template". Chemistry & Biology 9, nr 3 (marzec 2002): 297–307. http://dx.doi.org/10.1016/s1074-5521(02)00110-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Predki, Paul F., L. Mike Nayak, Morris B. C. Gottlieb i Lynne Regan. "Dissecting RNA-protein interactions: RNA-RNA recognition by Rop". Cell 80, nr 1 (styczeń 1995): 41–50. http://dx.doi.org/10.1016/0092-8674(95)90449-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

HONDA, Tomoyuki, i Keizo TOMONAGA. "Possible roles of endogenous RNA virus elements in RNA virus infection". Uirusu 66, nr 1 (2016): 39–46. http://dx.doi.org/10.2222/jsv.66.39.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Xue, Yuanchao. "Architecture of RNA–RNA interactions". Current Opinion in Genetics & Development 72 (luty 2022): 138–44. http://dx.doi.org/10.1016/j.gde.2021.11.007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Röthlisberger, Pascal, Christian Berk i Jonathan Hall. "RNA Chemistry for RNA Biology". CHIMIA International Journal for Chemistry 73, nr 5 (29.05.2019): 368–73. http://dx.doi.org/10.2533/chimia.2019.368.

Pełny tekst źródła
Streszczenie:
Advances in the chemical synthesis of RNA have opened new possibilities to address current questions in RNA biology. Access to site-specifically modified oligoribonucleotides is often a pre-requisite for RNA chemical-biology projects. Driven by the enormous research efforts for development of oligonucleotide therapeutics, a wide range of chemical modifications have been developed to modulate the intrinsic properties of nucleic acids in order to fit their use as therapeutics or research tools. The RNA synthesis platform, supported by the NCCR RNA & Disease, aims to provide access to a large variety of chemically modified nucleic acids. In this review, we describe some of the recent projects that involved work of the platform and highlight how RNA chemistry supports new discoveries in RNA biology.
Style APA, Harvard, Vancouver, ISO itp.
25

GUTHRIE, CHRISTINE. "Catalytic RNA and RNA Splicing". American Zoologist 29, nr 2 (maj 1989): 557–67. http://dx.doi.org/10.1093/icb/29.2.557.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Fu, Xiang-Dong. "RNA helicases regulate RNA condensates". Cell Research 30, nr 4 (9.03.2020): 281–82. http://dx.doi.org/10.1038/s41422-020-0296-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Newman, Andy. "RNA enzymes for RNA splicing". Nature 413, nr 6857 (październik 2001): 695–96. http://dx.doi.org/10.1038/35099665.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Abe, Hiroshi. "Nanostructured RNA for RNA Intereference". YAKUGAKU ZASSHI 133, nr 3 (1.03.2013): 373–78. http://dx.doi.org/10.1248/yakushi.12-00239-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Khemici, Vanessa, i Patrick Linder. "RNA helicases in RNA decay". Biochemical Society Transactions 46, nr 1 (19.01.2018): 163–72. http://dx.doi.org/10.1042/bst20170052.

Pełny tekst źródła
Streszczenie:
RNA molecules have the tendency to fold into complex structures or to associate with complementary RNAs that exoribonucleases have difficulties processing or degrading. Therefore, degradosomes in bacteria and organelles as well as exosomes in eukaryotes have teamed-up with RNA helicases. Whereas bacterial degradosomes are associated with RNA helicases from the DEAD-box family, the exosomes and mitochondrial degradosome use the help of Ski2-like and Suv3 RNA helicases.
Style APA, Harvard, Vancouver, ISO itp.
30

Meyer, Irmtraud M. "Predicting novel RNA–RNA interactions". Current Opinion in Structural Biology 18, nr 3 (czerwiec 2008): 387–93. http://dx.doi.org/10.1016/j.sbi.2008.03.006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Westhof, Eric, Benoît Masquida i Luc Jaeger. "RNA tectonics: towards RNA design". Folding and Design 1, nr 4 (sierpień 1996): R78—R88. http://dx.doi.org/10.1016/s1359-0278(96)00037-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Peng, LiNa, YuJiao Li, Lan Zhang i WenQiang Yu. "Moving RNA moves RNA forward". Science China Life Sciences 56, nr 10 (5.09.2013): 914–20. http://dx.doi.org/10.1007/s11427-013-4545-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Li, Thomas J. X., i Christian M. Reidys. "Combinatorics of RNA–RNA interaction". Journal of Mathematical Biology 64, nr 3 (4.05.2011): 529–56. http://dx.doi.org/10.1007/s00285-011-0423-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Muckstein, U., H. Tafer, J. Hackermuller, S. H. Bernhart, P. F. Stadler i I. L. Hofacker. "Thermodynamics of RNA-RNA binding". Bioinformatics 22, nr 10 (29.01.2006): 1177–82. http://dx.doi.org/10.1093/bioinformatics/btl024.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

SCHMIDT, FRANCIS J., BONGRAE CHO i HUGH B. NICHOLAS. "RNA Libraries and RNA Recognitiona". Annals of the New York Academy of Sciences 782, nr 1 (maj 1996): 526–33. http://dx.doi.org/10.1111/j.1749-6632.1996.tb40590.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Menzel, Peter, Stefan E. Seemann i Jan Gorodkin. "RILogo: visualizing RNA–RNA interactions". Bioinformatics 28, nr 19 (23.07.2012): 2523–26. http://dx.doi.org/10.1093/bioinformatics/bts461.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Kok, Chee Choy, i Peter C. McMinn. "Picornavirus RNA-dependent RNA polymerase". International Journal of Biochemistry & Cell Biology 41, nr 3 (marzec 2009): 498–502. http://dx.doi.org/10.1016/j.biocel.2008.03.019.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Günzl, Arthur, Thomas Bruderer, Gabriele Laufer, Bernd Schimanski, Lan-Chun Tu, Hui-Min Chung, Pei-Tseng Lee i Mary Gwo-Shu Lee. "RNA Polymerase I Transcribes Procyclin Genes and Variant Surface Glycoprotein Gene Expression Sites in Trypanosoma brucei". Eukaryotic Cell 2, nr 3 (czerwiec 2003): 542–51. http://dx.doi.org/10.1128/ec.2.3.542-551.2003.

Pełny tekst źródła
Streszczenie:
ABSTRACT In eukaryotes, RNA polymerase (pol) I exclusively transcribes the large rRNA gene unit (rDNA) and mRNA is synthesized by RNA pol II. The African trypanosome, Trypanosoma brucei, represents an exception to this rule. In this organism, transcription of genes encoding the variant surface glycoprotein (VSG) and the procyclins is resistant to α-amanitin, indicating that it is mediated by RNA pol I, while other protein-coding genes are transcribed by RNA pol II. To obtain firm proof for this concept, we generated a T. brucei cell line which exclusively expresses protein C epitope-tagged RNA pol I. Using an anti-protein C immunoaffinity matrix, we specifically depleted RNA pol I from transcriptionally active cell extracts. The depletion of RNA pol I impaired in vitro transcription initiated at the rDNA promoter, the GPEET procyclin gene promoter, and a VSG gene expression site promoter but did not affect transcription from the spliced leader (SL) RNA gene promoter. Fittingly, induction of RNA interference against the RNA pol I largest subunit in insect-form trypanosomes significantly reduced the relative transcriptional efficiency of rDNA, procyclin genes, and VSG expression sites in vivo whereas that of SL RNA, αβ-tubulin, and heat shock protein 70 genes was not affected. Our studies unequivocally show that T. brucei harbors a multifunctional RNA pol I which, in addition to transcribing rDNA, transcribes procyclin genes and VSG gene expression sites.
Style APA, Harvard, Vancouver, ISO itp.
39

Hammond, T. M., i N. P. Keller. "RNA Silencing inAspergillus nidulansIs Independent of RNA-Dependent RNA Polymerases". Genetics 169, nr 2 (15.11.2004): 607–17. http://dx.doi.org/10.1534/genetics.104.035964.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Skeparnias, Ilias, i Jinwei Zhang. "Cooperativity and Interdependency between RNA Structure and RNA–RNA Interactions". Non-Coding RNA 7, nr 4 (15.12.2021): 81. http://dx.doi.org/10.3390/ncrna7040081.

Pełny tekst źródła
Streszczenie:
Complex RNA–RNA interactions are increasingly known to play key roles in numerous biological processes from gene expression control to ribonucleoprotein granule formation. By contrast, the nature of these interactions and characteristics of their interfaces, especially those that involve partially or wholly structured RNAs, remain elusive. Herein, we discuss different modalities of RNA–RNA interactions with an emphasis on those that depend on secondary, tertiary, or quaternary structure. We dissect recently structurally elucidated RNA–RNA complexes including RNA triplexes, riboswitches, ribozymes, and reverse transcription complexes. These analyses highlight a reciprocal relationship that intimately links RNA structure formation with RNA–RNA interactions. The interactions not only shape and sculpt RNA structures but also are enabled and modulated by the structures they create. Understanding this two-way relationship between RNA structure and interactions provides mechanistic insights into the expanding repertoire of noncoding RNA functions, and may inform the design of novel therapeutics that target RNA structures or interactions.
Style APA, Harvard, Vancouver, ISO itp.
41

Snider, Daltry L., i Stacy M. Horner. "RNA modification of an RNA modifier prevents self-RNA sensing". PLOS Biology 19, nr 7 (30.07.2021): e3001342. http://dx.doi.org/10.1371/journal.pbio.3001342.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Koh, Hye Ran, Li Xing, Lawrence Kleiman i Sua Myong. "Repetitive RNA unwinding by RNA helicase A facilitates RNA annealing". Nucleic Acids Research 42, nr 13 (9.06.2014): 8556–64. http://dx.doi.org/10.1093/nar/gku523.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Shioda, Norifumi. "RNA toxicity and RAN translation in repeat expansion disorders". Folia Pharmacologica Japonica 150, nr 3 (2017): 165. http://dx.doi.org/10.1254/fpj.150.165.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

KIKUCHI, Yo. "Current RNA World". Journal of the Japan Veterinary Medical Association 52, nr 1 (1999): 1–5. http://dx.doi.org/10.12935/jvma1951.52.1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

付, 洪. "Multifunction of LncRNA RMRP RNA". Biophysics 08, nr 02 (2020): 19–27. http://dx.doi.org/10.12677/biphy.2020.82002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Turner, Richard. "RNA". Nature 418, nr 6894 (lipiec 2002): 213. http://dx.doi.org/10.1038/418213a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Darnell, James E. "RNA". Scientific American 253, nr 4 (październik 1985): 68–78. http://dx.doi.org/10.1038/scientificamerican1085-68.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Karbstein, Katrin, i Jennifer A. Doudna. "RNA". Chemistry & Biology 11, nr 2 (luty 2004): 149–51. http://dx.doi.org/10.1016/j.chembiol.2004.02.007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Nybo, Kristie. "RNA Methods: RNA Extraction from Plasma". BioTechniques 47, nr 4 (październik 2009): 821–23. http://dx.doi.org/10.2144/000113235.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Rabhi, Makhlouf, Roman Tuma i Marc Boudvillain. "RNA remodeling by hexameric RNA helicases". RNA Biology 7, nr 6 (listopad 2010): 655–66. http://dx.doi.org/10.4161/rna.7.6.13570.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii