Artykuły w czasopismach na temat „RNA metabolism”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: RNA metabolism.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „RNA metabolism”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Stern, David B., Michel Goldschmidt-Clermont i Maureen R. Hanson. "Chloroplast RNA Metabolism". Annual Review of Plant Biology 61, nr 1 (2.06.2010): 125–55. http://dx.doi.org/10.1146/annurev-arplant-042809-112242.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Riddihough, Guy. "RNA Methylation and Metabolism". Science 339, nr 6119 (31.01.2013): 490.4–491. http://dx.doi.org/10.1126/science.339.6119.490-d.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Volkening, Kathryn, i Michael J. Strong. "RNA Metabolism in Neurodegenerative Disease". Current Chemical Biology 5, nr 2 (1.05.2011): 90–98. http://dx.doi.org/10.2174/2212796811105020090.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Liu, Elaine Y., Christopher P. Cali i Edward B. Lee. "RNA metabolism in neurodegenerative disease". Disease Models & Mechanisms 10, nr 5 (1.05.2017): 509–18. http://dx.doi.org/10.1242/dmm.028613.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Mao, Steve. "RNA modification meets immune metabolism". Science 365, nr 6458 (12.09.2019): 1131.15–1133. http://dx.doi.org/10.1126/science.365.6458.1131-o.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Hammani, Kamel, i Philippe Giegé. "RNA metabolism in plant mitochondria". Trends in Plant Science 19, nr 6 (czerwiec 2014): 380–89. http://dx.doi.org/10.1016/j.tplants.2013.12.008.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Ramachandran, Vanitharani, i Xuemei Chen. "Small RNA metabolism in Arabidopsis". Trends in Plant Science 13, nr 7 (lipiec 2008): 368–74. http://dx.doi.org/10.1016/j.tplants.2008.03.008.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Gao, Fen-Biao, i J. Paul Taylor. "RNA metabolism in neurological disease". Brain Research 1584 (październik 2014): 1–2. http://dx.doi.org/10.1016/j.brainres.2014.09.011.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Houston, Stephanie. "lnc(RNA)-ing myeloid metabolism". Nature Immunology 24, nr 9 (21.08.2023): 1396. http://dx.doi.org/10.1038/s41590-023-01615-w.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Chatterjee, Biswanath, Che-Kun James Shen i Pritha Majumder. "RNA Modifications and RNA Metabolism in Neurological Disease Pathogenesis". International Journal of Molecular Sciences 22, nr 21 (1.11.2021): 11870. http://dx.doi.org/10.3390/ijms222111870.

Pełny tekst źródła
Streszczenie:
The intrinsic cellular heterogeneity and molecular complexity of the mammalian nervous system relies substantially on the dynamic nature and spatiotemporal patterning of gene expression. These features of gene expression are achieved in part through mechanisms involving various epigenetic processes such as DNA methylation, post-translational histone modifications, and non-coding RNA activity, amongst others. In concert, another regulatory layer by which RNA bases and sugar residues are chemically modified enhances neuronal transcriptome complexity. Similar RNA modifications in other systems collectively constitute the cellular epitranscriptome that integrates and impacts various physiological processes. The epitranscriptome is dynamic and is reshaped constantly to regulate vital processes such as development, differentiation and stress responses. Perturbations of the epitranscriptome can lead to various pathogenic conditions, including cancer, cardiovascular abnormalities and neurological diseases. Recent advances in next-generation sequencing technologies have enabled us to identify and locate modified bases/sugars on different RNA species. These RNA modifications modulate the stability, transport and, most importantly, translation of RNA. In this review, we discuss the formation and functions of some frequently observed RNA modifications—including methylations of adenine and cytosine bases, and isomerization of uridine to pseudouridine—at various layers of RNA metabolism, together with their contributions to abnormal physiological conditions that can lead to various neurodevelopmental and neurological disorders.
Style APA, Harvard, Vancouver, ISO itp.
11

Aguilar, Lisbeth-Carolina, Biplab Paul, Taylor Reiter, Louis Gendron, Arvind Arul Nambi Rajan, Rachel Montpetit, Christian Trahan, Sebastian Pechmann, Marlene Oeffinger i Ben Montpetit. "Altered rRNA processing disrupts nuclear RNA homeostasis via competition for the poly(A)-binding protein Nab2". Nucleic Acids Research 48, nr 20 (2.11.2020): 11675–94. http://dx.doi.org/10.1093/nar/gkaa964.

Pełny tekst źródła
Streszczenie:
Abstract RNA-binding proteins (RBPs) are key mediators of RNA metabolism. Whereas some RBPs exhibit narrow transcript specificity, others function broadly across both coding and non-coding RNAs. Here, in Saccharomyces cerevisiae, we demonstrate that changes in RBP availability caused by disruptions to distinct cellular processes promote a common global breakdown in RNA metabolism and nuclear RNA homeostasis. Our data shows that stabilization of aberrant ribosomal RNA (rRNA) precursors in an enp1-1 mutant causes phenotypes similar to RNA exosome mutants due to nucleolar sequestration of the poly(A)-binding protein (PABP) Nab2. Decreased nuclear PABP availability is accompanied by genome-wide changes in RNA metabolism, including increased pervasive transcripts levels and snoRNA processing defects. These phenotypes are mitigated by overexpression of PABPs, inhibition of rDNA transcription, or alterations in TRAMP activity. Our results highlight the need for cells to maintain poly(A)-RNA levels in balance with PABPs and other RBPs with mutable substrate specificity across nucleoplasmic and nucleolar RNA processes.
Style APA, Harvard, Vancouver, ISO itp.
12

Cavaiuolo, Marina, Richard Kuras, Francis‐André Wollman, Yves Choquet i Olivier Vallon. "Small RNA profiling in Chlamydomonas: insights into chloroplast RNA metabolism". Nucleic Acids Research 45, nr 18 (2.08.2017): 10783–99. http://dx.doi.org/10.1093/nar/gkx668.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Zhang, X., I. R. Henderson, C. Lu, P. J. Green i S. E. Jacobsen. "Role of RNA polymerase IV in plant small RNA metabolism". Proceedings of the National Academy of Sciences 104, nr 11 (5.03.2007): 4536–41. http://dx.doi.org/10.1073/pnas.0611456104.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Nickerson, Jeffrey A. "The biochemistry of RNA metabolism studied in situ". RNA Biology 6, nr 1 (styczeń 2009): 25–30. http://dx.doi.org/10.4161/rna.6.1.7563.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Chen, Jieqing, Bosheng Cai, Changxu Tian, Dongneng Jiang, Hongjuan Shi, Yang Huang, Chunhua Zhu, Guangli Li i Siping Deng. "RNA Sequencing (RNA-Seq) Analysis Reveals Liver Lipid Metabolism Divergent Adaptive Response to Low- and High-Salinity Stress in Spotted Scat (Scatophagus argus)". Animals 13, nr 9 (28.04.2023): 1503. http://dx.doi.org/10.3390/ani13091503.

Pełny tekst źródła
Streszczenie:
Spotted scat (Scatophagus argus) can tolerate a wide range of salinity fluctuations. It is a good model for studying environmental salinity adaptation. Lipid metabolism plays an important role in salinity adaptation in fish. To elucidate the mechanism of lipid metabolism in the osmoregulation, the liver transcriptome was analyzed after 22 d culture with a salinity of 5 ppt (Low-salinity group: LS), 25 ppt (Control group: Ctrl), and 35 ppt (High-salinity group: HS) water by using RNA sequencing (RNA-seq) in spotted scat. RNA-seq analysis showed that 1276 and 2768 differentially expressed genes (DEGs) were identified in the LS vs. Ctrl and HS vs. Ctrl, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the pathways of steroid hormone biosynthesis, steroid biosynthesis, glycerophospholipid metabolism, glycerolipid metabolism, and lipid metabolism were significantly enriched in the LS vs. Ctrl. The genes of steroid biosynthesis (sqle, dhcr7, and cyp51a1), steroid hormone biosynthesis (ugt2a1, ugt2a2, ugt2b20, and ugt2b31), and glycerophospholipid metabolism (cept1, pla2g4a, and ptdss2) were significantly down-regulated in the LS vs. Ctrl. The pathways related to lipid metabolisms, such as fatty acid metabolism, fatty acid biosynthesis, peroxisome proliferator-activated receptor (PPAR) signaling pathway, adipocytokine signaling pathway, fatty acid degradation, and unsaturated fatty acid biosynthesis, were significantly enriched in the HS vs. Ctrl. The genes of unsaturated fatty acid biosynthesis (scd1, hacd3, fads2, pecr, and elovl1) and adipocytokine signaling pathway (g6pc1, socs1, socs3, adipor2, pck1, and pparα) were significantly up-regulated in the HS vs. Ctrl. These results suggest that the difference in liver lipid metabolism is important to adapt to low- and high-salinity stress in spotted scat, which clarifies the molecular regulatory mechanisms of salinity adaptation in euryhaline fish.
Style APA, Harvard, Vancouver, ISO itp.
16

Tschudi, C. "New Turns in Trypanosome RNA Metabolism". Biochemical Society Transactions 28, nr 5 (1.10.2000): A472. http://dx.doi.org/10.1042/bst028a472c.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Bassett, Carole L. "Cajal Bodies and Plant RNA Metabolism". Critical Reviews in Plant Sciences 31, nr 3 (maj 2012): 258–70. http://dx.doi.org/10.1080/07352689.2011.645431.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

McInnes, L. Alison, i Tara L. Lauriat. "RNA metabolism and dysmyelination in schizophrenia". Neuroscience & Biobehavioral Reviews 30, nr 4 (styczeń 2006): 551–61. http://dx.doi.org/10.1016/j.neubiorev.2005.10.003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Planson, Anne-Gaëlle, Vincent Sauveplane, Etienne Dervyn i Matthieu Jules. "Bacterial growth physiology and RNA metabolism". Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1863, nr 5 (maj 2020): 194502. http://dx.doi.org/10.1016/j.bbagrm.2020.194502.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Leslie, M. "Sperm RNA fragments modify offspring metabolism". Science 351, nr 6268 (31.12.2015): 13. http://dx.doi.org/10.1126/science.351.6268.13.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Johnson, D. L., i S. A. S. Johnson. "CELL BIOLOGY: RNA Metabolism and Oncogenesis". Science 320, nr 5875 (25.04.2008): 461–62. http://dx.doi.org/10.1126/science.1158680.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Li, Juan, Yanchen Wen i Xiangdong Yang. "Understanding the Responses of Soil Bacterial Communities to Long-Term Fertilization Regimes Using DNA and RNA Sequencing". Agronomy 11, nr 12 (28.11.2021): 2425. http://dx.doi.org/10.3390/agronomy11122425.

Pełny tekst źródła
Streszczenie:
Studies of soil DNA-based and RNA-based bacterial communities under contrasting long-term fertilization regimes can provide valuable insights into how agricultural management affects soil microbial structure and functional diversity. In this study, soil bacterial communities subjected to six fertility treatments in an alkaline soil over 27 years were investigated by 454 pyrosequencing based on 16S rDNA and 16S rRNA. Long-term fertilization showed significant influences on the diversity of the soil DNA-based bacteria, as well as on their RNA-based members. The top five phyla (Proteobacteria, Acidobacteria, Chloroflexi, Actinobacteria, and Planctomycetes) were found in both the DNA- and RNA-based samples. However, the relative abundances of these phyla at both DNA and RNA levels were showed significantly different. Analysis results showed that the diversity of the 16S rRNA samples was consistently lower than that of the rDNA samples, however, 16S rRNA samples had higher relative abundance. PICRUSt analysis indicated that glycan biosynthesis and metabolism were detected mainly in the DNA samples, while metabolism and degradation of xenobiotics and the metabolism of amino acids, terpenoids and polyketides were relatively higher in the RNA samples. Bacilli were significantly more abundant in all the OM-fertilized soils. Redundancy analysis indicated that the relative abundances of both DNA- and RNA-based bacterial groups were correlated with soil total organic carbon content, nitrogen content, Olsen-P, and soil pH. Moreover, the RNA-based Bacilli were positively correlated with available phosphorus (Olsen-P).
Style APA, Harvard, Vancouver, ISO itp.
23

Phadtare, Sangita. "Unwinding activity of cold shock proteins and RNA metabolism". RNA Biology 8, nr 3 (maj 2011): 394–97. http://dx.doi.org/10.4161/rna.8.3.14823.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Nakamoto, Margaret A., Alexander F. Lovejoy, Alicja M. Cygan i John C. Boothroyd. "mRNA pseudouridylation affects RNA metabolism in the parasiteToxoplasma gondii". RNA 23, nr 12 (29.08.2017): 1834–49. http://dx.doi.org/10.1261/rna.062794.117.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Verma, Ashok. "Altered RNA metabolism and amyotrophic lateral sclerosis". Annals of Indian Academy of Neurology 14, nr 4 (2011): 239. http://dx.doi.org/10.4103/0972-2327.91933.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Weitzer, Stefan, i Javier Martinez. "hClp1, A Novel Kinase Revitalizes RNA Metabolism". Cell Cycle 6, nr 17 (wrzesień 2007): 2133–37. http://dx.doi.org/10.4161/cc.6.17.4642.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Wise, Jo Ann, i Olaf Nielsen. "Analysis of RNA Metabolism in Fission Yeast". Cold Spring Harbor Protocols 2017, nr 5 (maj 2017): pdb.top079798. http://dx.doi.org/10.1101/pdb.top079798.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Siira, Stefan J., Anne-Marie J. Shearwood, Cameron P. Bracken, Oliver Rackham i Aleksandra Filipovska. "Defects in RNA metabolism in mitochondrial disease". International Journal of Biochemistry & Cell Biology 85 (kwiecień 2017): 106–13. http://dx.doi.org/10.1016/j.biocel.2017.02.003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Jacob, S. T., E. M. Sajdel i H. N. Munro. "Regulation of Nucleolar RNA Metabolism by Hydrocortisone". European Journal of Biochemistry 7, nr 4 (3.03.2005): 449–53. http://dx.doi.org/10.1111/j.1432-1033.1969.tb19630.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Raghavan, Nithyakalyani, i J. Jayaraman. "Mitochondrial RNA metabolism during mitochondriogenesis in yeast". Journal of Biosciences 10, nr 1 (marzec 1986): 1–13. http://dx.doi.org/10.1007/bf02702834.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Rovira, Aleix Gorchs, i Alison G. Smith. "PPR proteins – orchestrators of organelle RNA metabolism". Physiologia Plantarum 166, nr 1 (23.04.2019): 451–59. http://dx.doi.org/10.1111/ppl.12950.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Arnvig, Kristine B., i Douglas B. Young. "Regulation of pathogen metabolism by small RNA". Drug Discovery Today: Disease Mechanisms 7, nr 1 (marzec 2010): e19-e24. http://dx.doi.org/10.1016/j.ddmec.2010.09.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Nicholls, Thomas J., Joanna Rorbach i Michal Minczuk. "Mitochondria: Mitochondrial RNA metabolism and human disease". International Journal of Biochemistry & Cell Biology 45, nr 4 (kwiecień 2013): 845–49. http://dx.doi.org/10.1016/j.biocel.2013.01.005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Denome, R. M., E. A. Werner i R. J. Patterson. "RNA metabolism in nudei: adenovirus and heat shock alter intranuclear RNA compartmentalization". Nucleic Acids Research 17, nr 5 (1989): 2081–98. http://dx.doi.org/10.1093/nar/17.5.2081.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Alaqeel, AM, H. Abou Al-Shaar, RK Shariff i A. Albakr. "The role of RNA metabolism in neurological diseases". Balkan Journal of Medical Genetics 18, nr 2 (1.12.2015): 5–14. http://dx.doi.org/10.1515/bjmg-2015-0080.

Pełny tekst źródła
Streszczenie:
Abstract Neurodegenerative disorders are commonly encountered in medical practices. Such diseases can lead to major morbidity and mortality among the affected individuals. The molecular pathogenesis of these disorders is not yet clear. Recent literature has revealed that mutations in RNA-binding proteins are a key cause of several human neuronal-based diseases. This review discusses the role of RNA metabolism in neurological diseases with specific emphasis on roles of RNA translation and microRNAs in neurodegeneration, RNA-mediated toxicity, repeat expansion diseases and RNA metabolism, molecular pathogenesis of amyotrophic lateral sclerosis and frontotemporal dementia, and neurobiology of survival motor neuron (SMN) and spinal muscular atrophy.
Style APA, Harvard, Vancouver, ISO itp.
36

Rossi, Simona, i Mauro Cozzolino. "Dysfunction of RNA/RNA-Binding Proteins in ALS Astrocytes and Microglia". Cells 10, nr 11 (3.11.2021): 3005. http://dx.doi.org/10.3390/cells10113005.

Pełny tekst źródła
Streszczenie:
Amyotrophic Lateral Sclerosis is a neurological disease that primarily affects motor neurons in the cortex, brainstem, and spinal cord. The process that leads to motor neuron degeneration is strongly influenced by non-motor neuronal events that occur in a variety of cell types. Among these, neuroinflammatory processes mediated by activated astrocytes and microglia play a relevant role. In recent years, it has become clear that dysregulation of essential steps of RNA metabolism, as a consequence of alterations in RNA-binding proteins (RBPs), is a central event in the degeneration of motor neurons. Yet, a causal link between dysfunctional RNA metabolism and the neuroinflammatory processes mediated by astrocytes and microglia in ALS has been poorly defined. In this review, we will discuss the available evidence showing that RBPs and associated RNA processing are affected in ALS astrocytes and microglia, and the possible mechanisms involved in these events.
Style APA, Harvard, Vancouver, ISO itp.
37

Gagliardi, Stella, Pamela Milani, Valentina Sardone, Orietta Pansarasa i Cristina Cereda. "From Transcriptome to Noncoding RNAs: Implications in ALS Mechanism". Neurology Research International 2012 (2012): 1–7. http://dx.doi.org/10.1155/2012/278725.

Pełny tekst źródła
Streszczenie:
In the last years, numerous studies have focused on understanding the metabolism of RNA and its implication in disease processes but abnormal RNA metabolism is still unknown. RNA plays a central role in translating genetic information into proteins and in many other catalytic and regulatory tasks. Recent advances in the study of RNA metabolism revealed complex pathways for the generation and maintenance of functional RNA in amyotrophic lateral sclerosis (ALS). Interestingly, perturbations in RNA processing have been described in ALS at various levels such as gene transcription, mRNA stabilization, transport, and translational regulations. In this paper, we will discuss the alteration of RNA profile in ALS disease, starting from transcription, the first step leading to gene expression, through the posttranscriptional regulation, including RNA/DNA binding proteins and aberrant exon splicing to protein noncoding RNAs, as lncRNA and microRNA.
Style APA, Harvard, Vancouver, ISO itp.
38

Ajamian, L., L. Abrahamyan, M. Milev, P. V. Ivanov, A. E. Kulozik, N. H. Gehring i A. J. Mouland. "Unexpected roles for UPF1 in HIV-1 RNA metabolism and translation". RNA 14, nr 5 (27.03.2008): 914–27. http://dx.doi.org/10.1261/rna.829208.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Zhu, Siran, Saul Rooney i Gracjan Michlewski. "RNA-Targeted Therapies and High-Throughput Screening Methods". International Journal of Molecular Sciences 21, nr 8 (23.04.2020): 2996. http://dx.doi.org/10.3390/ijms21082996.

Pełny tekst źródła
Streszczenie:
RNA-binding proteins (RBPs) are involved in regulating all aspects of RNA metabolism, including processing, transport, translation, and degradation. Dysregulation of RNA metabolism is linked to a plethora of diseases, such as cancer, neurodegenerative diseases, and neuromuscular disorders. Recent years have seen a dramatic shift in the knowledge base, with RNA increasingly being recognised as an attractive target for precision medicine therapies. In this article, we are going to review current RNA-targeted therapies. Furthermore, we will scrutinise a range of drug discoveries targeting protein-RNA interactions. In particular, we will focus on the interplay between Lin28 and let-7, splicing regulatory proteins and survival motor neuron (SMN) pre-mRNA, as well as HuR, Musashi, proteins and their RNA targets. We will highlight the mechanisms RBPs utilise to modulate RNA metabolism and discuss current high-throughput screening strategies. This review provides evidence that we are entering a new era of RNA-targeted medicine.
Style APA, Harvard, Vancouver, ISO itp.
40

Abedi-Gaballu, Fereydoon, Elham Kamal Kazemi, Seyed Ahmad Salehzadeh, Behnaz Mansoori, Farhad Eslami, Ali Emami, Gholamreza Dehghan, Behzad Baradaran, Behzad Mansoori i William C. Cho. "Metabolic Pathways in Breast Cancer Reprograming: An Insight to Non-Coding RNAs". Cells 11, nr 19 (23.09.2022): 2973. http://dx.doi.org/10.3390/cells11192973.

Pełny tekst źródła
Streszczenie:
Cancer cells reprogram their metabolisms to achieve high energetic requirements and produce precursors that facilitate uncontrolled cell proliferation. Metabolic reprograming involves not only the dysregulation in glucose-metabolizing regulatory enzymes, but also the enzymes engaging in the lipid and amino acid metabolisms. Nevertheless, the underlying regulatory mechanisms of reprograming are not fully understood. Non-coding RNAs (ncRNAs) as functional RNA molecules cannot translate into proteins, but they do play a regulatory role in gene expression. Moreover, ncRNAs have been demonstrated to be implicated in the metabolic modulations in breast cancer (BC) by regulating the metabolic-related enzymes. Here, we will focus on the regulatory involvement of ncRNAs (microRNA, circular RNA and long ncRNA) in BC metabolism, including glucose, lipid and glutamine metabolism. Investigation of this aspect may not only alter the approaches of BC diagnosis and prognosis, but may also open a new avenue in using ncRNA-based therapeutics for BC treatment by targeting different metabolic pathways.
Style APA, Harvard, Vancouver, ISO itp.
41

Zheng, Guanqun, John Arne Dahl, Yamei Niu, Peter Fedorcsak, Chun-Min Huang, Charles J. Li, Cathrine B. Vågbø i in. "ALKBH5 Is a Mammalian RNA Demethylase that Impacts RNA Metabolism and Mouse Fertility". Molecular Cell 49, nr 1 (styczeń 2013): 18–29. http://dx.doi.org/10.1016/j.molcel.2012.10.015.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Shah, Aftab Ali, Petra Leidinger, Andreas Keller, Anke Wendschlag, Christina Backes, Mirela Baus-Loncar, Eckart Meese i Nikolaus Blin. "The intestinal factor Tff3 and a miRNA network regulate murine caloric metabolism". RNA Biology 8, nr 1 (styczeń 2011): 77–81. http://dx.doi.org/10.4161/rna.8.1.13687.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Stern, M. Z., S. K. Gupta, M. Salmon-Divon, T. Haham, O. Barda, S. Levi, C. Wachtel, T. W. Nilsen i S. Michaeli. "Multiple roles for polypyrimidine tract binding (PTB) proteins in trypanosome RNA metabolism". RNA 15, nr 4 (13.02.2009): 648–65. http://dx.doi.org/10.1261/rna.1230209.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Tomecki, R., i A. Dziembowski. "Novel endoribonucleases as central players in various pathways of eukaryotic RNA metabolism". RNA 16, nr 9 (30.07.2010): 1692–724. http://dx.doi.org/10.1261/rna.2237610.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Carreras‐Sureda, Amado, i Claudio Hetz. "RNA metabolism: putting the brake on the UPR". EMBO reports 16, nr 5 (25.03.2015): 545–46. http://dx.doi.org/10.15252/embr.201540227.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Tadini, Luca, Nicolaj Jeran i Paolo Pesaresi. "GUN1 and Plastid RNA Metabolism: Learning from Genetics". Cells 9, nr 10 (16.10.2020): 2307. http://dx.doi.org/10.3390/cells9102307.

Pełny tekst źródła
Streszczenie:
GUN1 (genomes uncoupled 1), a chloroplast-localized pentatricopeptide repeat (PPR) protein with a C-terminal small mutS-related (SMR) domain, plays a central role in the retrograde communication of chloroplasts with the nucleus. This flow of information is required for the coordinated expression of plastid and nuclear genes, and it is essential for the correct development and functioning of chloroplasts. Multiple genetic and biochemical findings indicate that GUN1 is important for protein homeostasis in the chloroplast; however, a clear and unified view of GUN1′s role in the chloroplast is still missing. Recently, GUN1 has been reported to modulate the activity of the nucleus-encoded plastid RNA polymerase (NEP) and modulate editing of plastid RNAs upon activation of retrograde communication, revealing a major role of GUN1 in plastid RNA metabolism. In this opinion article, we discuss the recently identified links between plastid RNA metabolism and retrograde signaling by providing a new and extended concept of GUN1 activity, which integrates the multitude of functional genetic interactions reported over the last decade with its primary role in plastid transcription and transcript editing.
Style APA, Harvard, Vancouver, ISO itp.
47

Zhou, Yueqin, Songyan Liu, Arzu Öztürk i Geoffrey G. Hicks. "FUS-regulated RNA metabolism and DNA damage repair". Rare Diseases 2, nr 1 (styczeń 2014): e29515. http://dx.doi.org/10.4161/rdis.29515.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Yu, Ai-Ming. "Small Interfering RNA in Drug Metabolism and Transport". Current Drug Metabolism 8, nr 7 (1.10.2007): 700–708. http://dx.doi.org/10.2174/138920007782109751.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Finch, C. E., i D. G. Morgan. "RNA and Protein Metabolism in the Aging Brain". Annual Review of Neuroscience 13, nr 1 (marzec 1990): 75–88. http://dx.doi.org/10.1146/annurev.ne.13.030190.000451.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Henkin, T. M. "Riboswitch RNAs: using RNA to sense cellular metabolism". Genes & Development 22, nr 24 (15.12.2008): 3383–90. http://dx.doi.org/10.1101/gad.1747308.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii