Artykuły w czasopismach na temat „RNA flexibility”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: RNA flexibility.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „RNA flexibility”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Hagerman, Paul J. "FLEXIBILITY OF RNA". Annual Review of Biophysics and Biomolecular Structure 26, nr 1 (czerwiec 1997): 139–56. http://dx.doi.org/10.1146/annurev.biophys.26.1.139.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Darst, S. A., N. Opalka, P. Chacon, A. Polyakov, C. Richter, G. Zhang i W. Wriggers. "Conformational flexibility of bacterial RNA polymerase". Proceedings of the National Academy of Sciences 99, nr 7 (19.03.2002): 4296–301. http://dx.doi.org/10.1073/pnas.052054099.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Sutton, Julie, i Lois Pollack. "RNA Flexibility Depends on Structural Context". Biophysical Journal 108, nr 2 (styczeń 2015): 27a. http://dx.doi.org/10.1016/j.bpj.2014.11.174.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Warden, Meghan S., Kai Cai, Gabriel Cornilescu, Jordan E. Burke, Komala Ponniah, Samuel E. Butcher i Steven M. Pascal. "Conformational flexibility in the enterovirus RNA replication platform". RNA 25, nr 3 (21.12.2018): 376–87. http://dx.doi.org/10.1261/rna.069476.118.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Zhuo, Chen, Chengwei Zeng, Rui Yang, Haoquan Liu i Yunjie Zhao. "RPflex: A Coarse-Grained Network Model for RNA Pocket Flexibility Study". International Journal of Molecular Sciences 24, nr 6 (13.03.2023): 5497. http://dx.doi.org/10.3390/ijms24065497.

Pełny tekst źródła
Streszczenie:
RNA regulates various biological processes, such as gene regulation, RNA splicing, and intracellular signal transduction. RNA’s conformational dynamics play crucial roles in performing its diverse functions. Thus, it is essential to explore the flexibility characteristics of RNA, especially pocket flexibility. Here, we propose a computational approach, RPflex, to analyze pocket flexibility using the coarse-grained network model. We first clustered 3154 pockets into 297 groups by similarity calculation based on the coarse-grained lattice model. Then, we introduced the flexibility score to quantify the flexibility by global pocket features. The results show strong correlations between the flexibility scores and root-mean-square fluctuation (RMSF) values, with Pearson correlation coefficients of 0.60, 0.76, and 0.53 in Testing Sets I–III. Considering both flexibility score and network calculations, the Pearson correlation coefficient was increased to 0.71 in flexible pockets on Testing Set IV. The network calculations reveal that the long-range interaction changes contributed most to flexibility. In addition, the hydrogen bonds in the base–base interactions greatly stabilize the RNA structure, while backbone interactions determine RNA folding. The computational analysis of pocket flexibility could facilitate RNA engineering for biological or medical applications.
Style APA, Harvard, Vancouver, ISO itp.
6

Hyeon, Changbong, Ruxandra I. Dima i D. Thirumalai. "Size, shape, and flexibility of RNA structures". Journal of Chemical Physics 125, nr 19 (21.11.2006): 194905. http://dx.doi.org/10.1063/1.2364190.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Kilburn, John D., Joon Ho Roh, Liang Guo, Robert M. Briber i Sarah A. Woodson. "RNA Flexibility and Folding in Crowded Solutions". Biophysical Journal 102, nr 3 (styczeń 2012): 644a. http://dx.doi.org/10.1016/j.bpj.2011.11.3506.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Rau, M., W. T. Stump i K. B. Hall. "Intrinsic flexibility of snRNA hairpin loops facilitates protein binding". RNA 18, nr 11 (25.09.2012): 1984–95. http://dx.doi.org/10.1261/rna.035006.112.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Fairman, Connor W., Andrew M. L. Lever i Julia C. Kenyon. "Evaluating RNA Structural Flexibility: Viruses Lead the Way". Viruses 13, nr 11 (22.10.2021): 2130. http://dx.doi.org/10.3390/v13112130.

Pełny tekst źródła
Streszczenie:
Our understanding of RNA structure has lagged behind that of proteins and most other biological polymers, largely because of its ability to adopt multiple, and often very different, functional conformations within a single molecule. Flexibility and multifunctionality appear to be its hallmarks. Conventional biochemical and biophysical techniques all have limitations in solving RNA structure and to address this in recent years we have seen the emergence of a wide diversity of techniques applied to RNA structural analysis and an accompanying appreciation of its ubiquity and versatility. Viral RNA is a particularly productive area to study in that this economy of function within a single molecule admirably suits the minimalist lifestyle of viruses. Here, we review the major techniques that are being used to elucidate RNA conformational flexibility and exemplify how the structure and function are, as in all biology, tightly linked.
Style APA, Harvard, Vancouver, ISO itp.
10

Hetzke, Thilo, Marc Vogel, Dnyaneshwar B. Gophane, Julia E. Weigand, Beatrix Suess, Snorri Th Sigurdsson i Thomas F. Prisner. "Influence of Mg2+ on the conformational flexibility of a tetracycline aptamer". RNA 25, nr 1 (18.10.2018): 158–67. http://dx.doi.org/10.1261/rna.068684.118.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Bao, Lei, Xi Zhang, Lei Jin i Zhi-Jie Tan. "Flexibility of nucleic acids: From DNA to RNA". Chinese Physics B 25, nr 1 (styczeń 2016): 018703. http://dx.doi.org/10.1088/1674-1056/25/1/018703.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Faustino, Ignacio, Alberto Pérez i Modesto Orozco. "Toward a Consensus View of Duplex RNA Flexibility". Biophysical Journal 99, nr 6 (wrzesień 2010): 1876–85. http://dx.doi.org/10.1016/j.bpj.2010.06.061.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Hohng, Sungchul, Timothy J. Wilson, Elliot Tan, Robert M. Clegg, David M. J. Lilley i Taekjip Ha. "Conformational Flexibility of Four-way Junctions in RNA". Journal of Molecular Biology 336, nr 1 (luty 2004): 69–79. http://dx.doi.org/10.1016/j.jmb.2003.12.014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Dalluge, J. "Conformational flexibility in RNA: the role of dihydrouridine". Nucleic Acids Research 24, nr 6 (15.03.1996): 1073–79. http://dx.doi.org/10.1093/nar/24.6.1073.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Bonin, M. "Analysis of RNA flexibility by scanning force spectroscopy". Nucleic Acids Research 30, nr 16 (15.08.2002): 81e—81. http://dx.doi.org/10.1093/nar/gnf080.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Haque, Farzin, Fengmei Pi, Zhengyi Zhao, Shanqing Gu, Haibo Hu, Hang Yu i Peixuan Guo. "RNA versatility, flexibility, and thermostability for practice in RNA nanotechnology and biomedical applications". Wiley Interdisciplinary Reviews: RNA 9, nr 1 (3.11.2017): e1452. http://dx.doi.org/10.1002/wrna.1452.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Fulle, Simone, i Holger Gohlke. "Analyzing the Flexibility of RNA Structures by Constraint Counting". Biophysical Journal 94, nr 11 (czerwiec 2008): 4202–19. http://dx.doi.org/10.1529/biophysj.107.113415.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Fernández-Tornero, Carlos, Bettina Böttcher, Umar Jan Rashid, Ulrich Steuerwald, Beate Flörchinger, Damien P. Devos, Doris Lindner i Christoph W. Müller. "Conformational flexibility of RNA polymerase III during transcriptional elongation". EMBO Journal 29, nr 22 (22.10.2010): 3762–72. http://dx.doi.org/10.1038/emboj.2010.266.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Fulle, Simone, i Holger Gohlke. "Constraint counting on RNA structures: Linking flexibility and function". Methods 49, nr 2 (październik 2009): 181–88. http://dx.doi.org/10.1016/j.ymeth.2009.04.004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Kasprzak, Wojciech, Eckart Bindewald, Tae-Jin Kim, Luc Jaeger i Bruce A. Shapiro. "Use of RNA structure flexibility data in nanostructure modeling". Methods 54, nr 2 (czerwiec 2011): 239–50. http://dx.doi.org/10.1016/j.ymeth.2010.12.010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Boerneke, Mark A., i Thomas Hermann. "Conformational flexibility of viral RNA switches studied by FRET". Methods 91 (grudzień 2015): 35–39. http://dx.doi.org/10.1016/j.ymeth.2015.09.013.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Sutton, Julie L., i Lois Pollack. "Tuning RNA Flexibility with Helix Length and Junction Sequence". Biophysical Journal 109, nr 12 (grudzień 2015): 2644–53. http://dx.doi.org/10.1016/j.bpj.2015.10.039.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Badorrek, Christopher S., i Kevin M. Weeks. "RNA flexibility in the dimerization domain of a gamma retrovirus". Nature Chemical Biology 1, nr 2 (5.06.2005): 104–11. http://dx.doi.org/10.1038/nchembio712.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Pun, Chi Seng, Brandon Yung Sin Yong i Kelin Xia. "Weighted-persistent-homology-based machine learning for RNA flexibility analysis". PLOS ONE 15, nr 8 (21.08.2020): e0237747. http://dx.doi.org/10.1371/journal.pone.0237747.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Kostek, Seth A., Patricia Grob, Sacha De Carlo, J. Slaton Lipscomb, Florian Garczarek i Eva Nogales. "Molecular Architecture and Conformational Flexibility of Human RNA Polymerase II". Structure 14, nr 11 (listopad 2006): 1691–700. http://dx.doi.org/10.1016/j.str.2006.09.011.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Wilkinson, Thomas A., Lingyang Zhu, Weidong Hu i Yuan Chen. "Retention of Conformational Flexibility in HIV-1 Rev−RNA Complexes†". Biochemistry 43, nr 51 (grudzień 2004): 16153–60. http://dx.doi.org/10.1021/bi048409e.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Gabel, Frank, Die Wang, Dominique Madern, Anthony Sadler, Kwaku Dayie, Maryam Zamanian Daryoush, Dietmar Schwahn, Giuseppe Zaccai, Xavier Lee i Bryan R. G. Williams. "Dynamic Flexibility of Double-stranded RNA Activated PKR in Solution". Journal of Molecular Biology 359, nr 3 (czerwiec 2006): 610–23. http://dx.doi.org/10.1016/j.jmb.2006.03.049.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Noy, Agnes, Alberto Pérez, Filip Lankas, F. Javier Luque i Modesto Orozco. "Relative Flexibility of DNA and RNA: a Molecular Dynamics Study". Journal of Molecular Biology 343, nr 3 (październik 2004): 627–38. http://dx.doi.org/10.1016/j.jmb.2004.07.048.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Shikanai, Toshiharu. "RNA editing in plants: Machinery and flexibility of site recognition". Biochimica et Biophysica Acta (BBA) - Bioenergetics 1847, nr 9 (wrzesień 2015): 779–85. http://dx.doi.org/10.1016/j.bbabio.2014.12.010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Feig, Michael, i Zachary F. Burton. "RNA polymerase II flexibility during translocation from normal mode analysis". Proteins: Structure, Function, and Bioinformatics 78, nr 2 (5.08.2009): 434–46. http://dx.doi.org/10.1002/prot.22560.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Melidis, Lazaros, Iain B. Styles i Michael J. Hannon. "Targeting structural features of viral genomes with a nano-sized supramolecular drug". Chemical Science 12, nr 20 (2021): 7174–84. http://dx.doi.org/10.1039/d1sc00933h.

Pełny tekst źródła
Streszczenie:
MD simulations and Markov state modeling explore induced fit binding of metallo-helicates to bulges in dynamic TAR RNA, reproduce experimental data, show how RNA conformational flexibility is reduced, and give mechanistic insight into insertion.
Style APA, Harvard, Vancouver, ISO itp.
32

He, Jiahua, Huanyu Tao i Sheng-You Huang. "Protein-ensemble–RNA docking by efficient consideration of protein flexibility through homology models". Bioinformatics 35, nr 23 (14.05.2019): 4994–5002. http://dx.doi.org/10.1093/bioinformatics/btz388.

Pełny tekst źródła
Streszczenie:
AbstractMotivationGiven the importance of protein–ribonucleic acid (RNA) interactions in many biological processes, a variety of docking algorithms have been developed to predict the complex structure from individual protein and RNA partners in the past decade. However, due to the impact of molecular flexibility, the performance of current methods has hit a bottleneck in realistic unbound docking. Pushing the limit, we have proposed a protein-ensemble–RNA docking strategy to explicitly consider the protein flexibility in protein–RNA docking through an ensemble of multiple protein structures, which is referred to as MPRDock. Instead of taking conformations from MD simulations or experimental structures, we obtained the multiple structures of a protein by building models from its homologous templates in the Protein Data Bank (PDB).ResultsOur approach can not only avoid the reliability issue of structures from MD simulations but also circumvent the limited number of experimental structures for a target protein in the PDB. Tested on 68 unbound–bound and 18 unbound–unbound protein–RNA complexes, our MPRDock/DITScorePR considerably improved the docking performance and achieved a significantly higher success rate than single-protein rigid docking whether pseudo-unbound templates are included or not. Similar improvements were also observed when combining our ensemble docking strategy with other scoring functions. The present homology model-based ensemble docking approach will have a general application in molecular docking for other interactions.Availability and implementationhttp://huanglab.phys.hust.edu.cn/mprdock/Supplementary informationSupplementary data are available at Bioinformatics online.
Style APA, Harvard, Vancouver, ISO itp.
33

Chan, Clarence W., Deanna Badong, Rakhi Rajan i Alfonso Mondragón. "Crystal structures of an unmodified bacterial tRNA reveal intrinsic structural flexibility and plasticity as general properties of unbound tRNAs". RNA 26, nr 3 (17.12.2019): 278–89. http://dx.doi.org/10.1261/rna.073478.119.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

de Almeida Ribeiro, Euripedes, Mads Beich-Frandsen, Petr V. Konarev, Weifeng Shang, Branislav Večerek, Georg Kontaxis, Hermann Hämmerle i in. "Structural flexibility of RNA as molecular basis for Hfq chaperone function". Nucleic Acids Research 40, nr 16 (18.06.2012): 8072–84. http://dx.doi.org/10.1093/nar/gks510.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Krüger, Dennis M., Johannes Bergs, Sina Kazemi i Holger Gohlke. "Target Flexibility in RNA−Ligand Docking Modeled by Elastic Potential Grids". ACS Medicinal Chemistry Letters 2, nr 7 (12.04.2011): 489–93. http://dx.doi.org/10.1021/ml100217h.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Chao, Jeffrey A., G. S. Prasad, Susan A. White, C. David Stout i James R. Williamson. "Inherent Protein Structural Flexibility at the RNA-binding Interface of L30e". Journal of Molecular Biology 326, nr 4 (luty 2003): 999–1004. http://dx.doi.org/10.1016/s0022-2836(02)01476-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

De Carlo, Sacha, Christophe Carles, Michel Riva i Patrick Schultz. "Cryo-negative Staining Reveals Conformational Flexibility Within Yeast RNA Polymerase I". Journal of Molecular Biology 329, nr 5 (czerwiec 2003): 891–902. http://dx.doi.org/10.1016/s0022-2836(03)00510-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Kasprzak, Wojciech K., Kirill A. Afonin, Eckart Bindewald, Praneet S. Puppala, Tae-Jin Kim, Michael T. Zimmermann, Robert L. Jernigan i Bruce A. Shapiro. "Coarse-Grained Computational Characterization of RNA Nanocube Flexibility Correlates with Experiments". Biophysical Journal 104, nr 2 (styczeń 2013): 16a. http://dx.doi.org/10.1016/j.bpj.2012.11.119.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Zacharias, Martin, i Paul J. Hagerman. "The Influence of Symmetric Internal Loops on the Flexibility of RNA". Journal of Molecular Biology 257, nr 2 (marzec 1996): 276–89. http://dx.doi.org/10.1006/jmbi.1996.0162.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Guruge, Ivantha, Ghazaleh Taherzadeh, Jian Zhan, Yaoqi Zhou i Yuedong Yang. "B -factor profile prediction for RNA flexibility using support vector machines". Journal of Computational Chemistry 39, nr 8 (21.11.2017): 407–11. http://dx.doi.org/10.1002/jcc.25124.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Lozano, Gloria, Alejandro Trapote, Jorge Ramajo, Xavier Elduque, Anna Grandas, Jordi Robles, Enrique Pedroso i Encarnación Martínez-Salas. "Local RNA flexibility perturbation of the IRES element induced by a novel ligand inhibits viral RNA translation". RNA Biology 12, nr 5 (16.03.2015): 555–68. http://dx.doi.org/10.1080/15476286.2015.1025190.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Murchie, Alastair I. H., Ben Davis, Catherine Isel, Mohammad Afshar, Martin J. Drysdale, Justin Bower, Andrew J. Potter i in. "Structure-based Drug Design Targeting an Inactive RNA Conformation: Exploiting the Flexibility of HIV-1 TAR RNA". Journal of Molecular Biology 336, nr 3 (luty 2004): 625–38. http://dx.doi.org/10.1016/j.jmb.2003.12.028.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Noble, C. G., S. P. Lim, Y. L. Chen, C. W. Liew, L. Yap, J. Lescar i P. Y. Shi. "Conformational Flexibility of the Dengue Virus RNA-Dependent RNA Polymerase Revealed by a Complex with an Inhibitor". Journal of Virology 87, nr 9 (13.02.2013): 5291–95. http://dx.doi.org/10.1128/jvi.00045-13.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Chuwdhury, GS, Irene Oi-Lin Ng i Daniel Wai-Hung Ho. "scAnalyzeR: A Comprehensive Software Package With Graphical User Interface for Single-Cell RNA Sequencing Analysis and its Application on Liver Cancer". Technology in Cancer Research & Treatment 21 (styczeń 2022): 153303382211427. http://dx.doi.org/10.1177/15330338221142729.

Pełny tekst źródła
Streszczenie:
Introduction: The application of single-cell RNA sequencing to delineate tissue heterogeneity and complexity has become increasingly popular. Given its tremendous resolution and high-dimensional capacity for in-depth investigation, single-cell RNA sequencing offers an unprecedented research power. Although some popular software packages are available for single-cell RNA sequencing data analysis and visualization, it is still a big challenge for their usage, as they provide only a command-line interface and require significant level of bioinformatics skills. Methods: We have developed scAnalyzeR, which is a single-cell RNA sequencing analysis pipeline with an interactive and user-friendly graphical interface for analyzing and visualizing single-cell RNA sequencing data. It accepts single-cell RNA sequencing data from various technology platforms and different model organisms (human and mouse) and allows flexibility in input file format. It provides functionalities for data preprocessing, quality control, basic summary statistics, dimension reduction, unsupervised clustering, differential gene expression, gene set enrichment analysis, correlation analysis, pseudotime cell trajectory inference, and various visualization plots. It also provides default parameters for easy usage and allows a wide range of flexibility and optimization by accepting user-defined options. It has been developed as a docker image that can be run in any docker-supported environment including Linux, Mac, and Windows, without installing any dependencies. Results: We compared the performance of scAnalyzeR with 2 other graphical tools that are popular for analyzing single-cell RNA sequencing data. The comparison was based on the comprehensiveness of functionalities, ease of usage and flexibility, and execution time. In general, scAnalyzeR outperformed the other tested counterparts in various aspects, demonstrating its superior overall performance. To illustrate the usefulness of scAnalyzeR in cancer research, we have analyzed the in-house liver cancer single-cell RNA sequencing dataset. Liver cancer tumor cells were revealed to have multiple subpopulations with distinctive gene expression signatures. Conclusion: scAnalyzeR has comprehensive functionalities and demonstrated usability. We anticipate more functionalities to be adopted in the future development.
Style APA, Harvard, Vancouver, ISO itp.
45

Rohayem, Jacques, Katrin Jäger, Ivonne Robel, Ulrike Scheffler, Achim Temme i Wolfram Rudolph. "Characterization of norovirus 3Dpol RNA-dependent RNA polymerase activity and initiation of RNA synthesis". Journal of General Virology 87, nr 9 (1.09.2006): 2621–30. http://dx.doi.org/10.1099/vir.0.81802-0.

Pełny tekst źródła
Streszczenie:
Norovirus (NV) 3Dpol is a non-structural protein predicted to play an essential role in the replication of the NV genome. In this study, the characteristics of NV 3Dpol activity and initiation of RNA synthesis have been examined in vitro. Recombinant NV 3Dpol, as well as a 3Dpol active-site mutant were expressed in Escherichia coli and purified. NV 3Dpol was able to synthesize RNA in vitro and displayed flexibility with respect to the use of Mg2+ or Mn2+ as a cofactor. NV 3Dpol yielded two different products when incubated with synthetic RNA in vitro: (i) a double-stranded RNA consisting of two single strands of opposite polarity or (ii) the single-stranded RNA template labelled at its 3′ terminus by terminal transferase activity. Initiation of RNA synthesis occurred de novo rather than by back-priming, as evidenced by the fact that the two strands of the double-stranded RNA product could be separated, and by dissociation in time-course analysis of terminal transferase and RNA synthesis activities. In addition, RNA synthesis was not affected by blocking of the 3′ terminus of the RNA template by a chain terminator, sustaining de novo initiation of RNA synthesis. NV 3Dpol displays in vitro properties characteristic of RNA-dependent RNA polymerases, allowing the implementation of this in vitro enzymic assay for the development and validation of antiviral drugs against NV, a so far non-cultivated virus and an important human pathogen.
Style APA, Harvard, Vancouver, ISO itp.
46

Tavallaie, Roya, Nadim Darwish, D. Brynn Hibbert i J. Justin Gooding. "Nucleic-acid recognition interfaces: how the greater ability of RNA duplexes to bend towards the surface influences electrochemical sensor performance". Chemical Communications 51, nr 92 (2015): 16526–29. http://dx.doi.org/10.1039/c5cc05450h.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Vázquez, Ana López, José M. Martín Alonso i Francisco Parra. "Mutation Analysis of the GDD Sequence Motif of a Calicivirus RNA-Dependent RNA Polymerase". Journal of Virology 74, nr 8 (15.04.2000): 3888–91. http://dx.doi.org/10.1128/jvi.74.8.3888-3891.2000.

Pełny tekst źródła
Streszczenie:
ABSTRACT The RNA-dependent RNA polymerase from rabbit hemorrhagic disease virus, a calicivirus, is known to have a conserved GDD amino acid motif and several additional regions of sequence homology with all types of polymerases. To test whether both aspartic acid residues are in fact involved in the catalytic activity and metal ion coordination of the enzyme, several defined mutations have been made in order to replace them by glutamate, asparagine, or glycine. All six mutant enzymes were produced in Escherichia coli, and their in vitro poly(U) polymerase activity was characterized. The results demonstrated that the first aspartate residue was absolutely required for enzyme function and that some flexibility existed with respect to the second, which could be replaced by glutamate.
Style APA, Harvard, Vancouver, ISO itp.
48

Mishler, D. M., A. B. Christ i J. A. Steitz. "Flexibility in the site of exon junction complex deposition revealed by functional group and RNA secondary structure alterations in the splicing substrate". RNA 14, nr 12 (24.10.2008): 2657–70. http://dx.doi.org/10.1261/rna.1312808.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Chamberlin, Stacy I., i Kevin M. Weeks. "Mapping Local Nucleotide Flexibility by Selective Acylation of 2‘-Amine Substituted RNA". Journal of the American Chemical Society 122, nr 2 (styczeń 2000): 216–24. http://dx.doi.org/10.1021/ja9914137.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Egli, M., G. Minasov, L. Su i A. Rich. "Metal ions and flexibility in a viral RNA pseudoknot at atomic resolution". Proceedings of the National Academy of Sciences 99, nr 7 (19.03.2002): 4302–7. http://dx.doi.org/10.1073/pnas.062055599.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii