Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: RNA-binding.

Artykuły w czasopismach na temat „RNA-binding”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „RNA-binding”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Muckstein, U., H. Tafer, J. Hackermuller, S. H. Bernhart, P. F. Stadler i I. L. Hofacker. "Thermodynamics of RNA-RNA binding". Bioinformatics 22, nr 10 (29.01.2006): 1177–82. http://dx.doi.org/10.1093/bioinformatics/btl024.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Hallegger, M., A. Taschner i M. F. Jantsch. "RNA aptamers binding the double-stranded RNA-binding domain". RNA 12, nr 11 (27.09.2006): 1993–2004. http://dx.doi.org/10.1261/rna.125506.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Muto, Yutaka, Chris Oubridge i Kiyoshi Nagai. "RNA-binding proteins: TRAPping RNA bases". Current Biology 10, nr 1 (styczeń 2000): R19—R21. http://dx.doi.org/10.1016/s0960-9822(99)00250-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Kotelnikov, R. N., S. G. Shpiz, A. I. Kalmykova i V. A. Gvozdev. "RNA-binding proteins in RNA interference". Molecular Biology 40, nr 4 (lipiec 2006): 528–40. http://dx.doi.org/10.1134/s0026893306040054.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Serin, Guillaume, Gérard Joseph, Laurence Ghisolfi, Marielle Bauzan, Monique Erard, François Amalric i Philippe Bouvet. "Two RNA-binding Domains Determine the RNA-binding Specificity of Nucleolin". Journal of Biological Chemistry 272, nr 20 (16.05.1997): 13109–16. http://dx.doi.org/10.1074/jbc.272.20.13109.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Sastry, Srin, i Barbara M. Ross. "RNA-binding site in T7 RNA polymerase". Proceedings of the National Academy of Sciences 95, nr 16 (4.08.1998): 9111–16. http://dx.doi.org/10.1073/pnas.95.16.9111.

Pełny tekst źródła
Streszczenie:
Recent models of RNA polymerase transcription complexes have invoked the idea that enzyme-nascent RNA contacts contribute to the stability of the complexes. Although much progress on this topic has been made with the multisubunit Escherichia coli RNA polymerase, there is a paucity of information regarding the structure of single-subunit phage RNA polymerase transcription complexes. Here, we photo-cross-linked the RNA in a T7 RNA polymerase transcription complex and mapped a major contact site between amino acid residues 144 and 168 and probably a minor contact between residues 1 and 93. These regions of the polymerase are proposed to interact with the emerging RNA during transcription because the 5′ end of the RNA was cross-linked. The contacts are both ionic and nonionic (hydrophobic). The specific inhibitor of T7 transcription, T7 lysozyme, does not compete with T7 RNA polymerase for RNA cross-linking, implying that the RNA does not bind the lysozyme. However, lysozyme may act indirectly via a conformational change in the polymerase. In the current model, the DNA template lies in the polymerase cleft and the fingers subdomain may contact or maintain a template bubble, and a region in the N terminus forms a partly solvent-accessible binding channel for the emerging RNA.
Style APA, Harvard, Vancouver, ISO itp.
7

Singh, Arunima. "RNA-binding protein kinetics". Nature Methods 18, nr 4 (kwiecień 2021): 335. http://dx.doi.org/10.1038/s41592-021-01122-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

SUGITA, Mamoru, i Masahiro SUGIURA. "Chloroplast RNA-binding Proteins". Nippon Nōgeikagaku Kaishi 71, nr 11 (1997): 1177–79. http://dx.doi.org/10.1271/nogeikagaku1924.71.1177.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Larochelle, Stéphane. "RNA-binding proteome redux". Nature Methods 16, nr 3 (27.02.2019): 219. http://dx.doi.org/10.1038/s41592-019-0349-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Laird-Offringa, Ite A., i Joel G. Belasco. "RNA-binding proteins tamed". Nature Structural & Molecular Biology 5, nr 8 (sierpień 1998): 665–68. http://dx.doi.org/10.1038/1356.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Goers, Emily S., Rodger B. Voelker, Devika P. Gates i J. Andrew Berglund. "RNA Binding Specificity ofDrosophilaMuscleblind†". Biochemistry 47, nr 27 (lipiec 2008): 7284–94. http://dx.doi.org/10.1021/bi702252d.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Smith, Colin A., Valerie Calabro i Alan D. Frankel. "An RNA-Binding Chameleon". Molecular Cell 6, nr 5 (listopad 2000): 1067–76. http://dx.doi.org/10.1016/s1097-2765(00)00105-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Goodall, Greg, Jonathan Levy, Maria Mieszczak i Witold Filipowicz. "Plant RNA-binding proteins". Molecular Biology Reports 14, nr 2-3 (1990): 137. http://dx.doi.org/10.1007/bf00360447.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Nickelsen, J�rg. "Chloroplast RNA-binding proteins". Current Genetics 43, nr 6 (1.09.2003): 392–99. http://dx.doi.org/10.1007/s00294-003-0425-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Shimada, Naohiko, Reiko Iwase, Tetsuji Yamaoka i Akira Murakami. "Design of RNA-Binding Oligopeptides Based on Information of RNA-Binding Protein". Polymer Journal 35, nr 6 (czerwiec 2003): 507–12. http://dx.doi.org/10.1295/polymj.35.507.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Stefl, Richard, Ming Xu, Lenka Skrisovska, Ronald B. Emeson i Frédéric H. T. Allain. "Structure and Specific RNA Binding of ADAR2 Double-Stranded RNA Binding Motifs". Structure 14, nr 2 (luty 2006): 345–55. http://dx.doi.org/10.1016/j.str.2005.11.013.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Windbichler, Nikolai, i Renée Schroeder. "Isolation of specific RNA-binding proteins using the streptomycin-binding RNA aptamer". Nature Protocols 1, nr 2 (27.06.2006): 637–40. http://dx.doi.org/10.1038/nprot.2006.95.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Gonzalez-Rivera, Juan C., Asuka A. Orr, Sean M. Engels, Joseph M. Jakubowski, Mark W. Sherman, Katherine N. O'Connor, Tomas Matteson, Brendan C. Woodcock, Lydia M. Contreras i Phanourios Tamamis. "Computational evolution of an RNA-binding protein towards enhanced oxidized-RNA binding". Computational and Structural Biotechnology Journal 18 (2020): 137–52. http://dx.doi.org/10.1016/j.csbj.2019.12.003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Tuccinardi, Tiziano. "Binding-interaction prediction of RNA-binding ligands". Future Medicinal Chemistry 3, nr 6 (kwiecień 2011): 723–33. http://dx.doi.org/10.4155/fmc.11.25.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Zhu, J., K. Gopinath, A. Murali, G. Yi, S. D. Hayward, H. Zhu i C. Kao. "RNA-binding proteins that inhibit RNA virus infection". Proceedings of the National Academy of Sciences 104, nr 9 (20.02.2007): 3129–34. http://dx.doi.org/10.1073/pnas.0611617104.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Fu, Yuan, i Anne Baranger. "MBNL1-RNA Interactions: Binding-Induced Rna Conformational Changes". Biophysical Journal 102, nr 3 (styczeń 2012): 75a. http://dx.doi.org/10.1016/j.bpj.2011.11.438.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Jolma, Arttu, Jilin Zhang, Estefania Mondragón, Ekaterina Morgunova, Teemu Kivioja, Kaitlin U. Laverty, Yimeng Yin i in. "Binding specificities of human RNA-binding proteins toward structured and linear RNA sequences". Genome Research 30, nr 7 (lipiec 2020): 962–73. http://dx.doi.org/10.1101/gr.258848.119.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Brooks, Roman, Christian R. Eckmann i Michael F. Jantsch. "The double-stranded RNA-binding domains ofXenopus laevisADAR1 exhibit different RNA-binding behaviors". FEBS Letters 434, nr 1-2 (28.08.1998): 121–26. http://dx.doi.org/10.1016/s0014-5793(98)00963-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Burd, C. G., E. L. Matunis i G. Dreyfuss. "The multiple RNA-binding domains of the mRNA poly(A)-binding protein have different RNA-binding activities". Molecular and Cellular Biology 11, nr 7 (lipiec 1991): 3419–24. http://dx.doi.org/10.1128/mcb.11.7.3419-3424.1991.

Pełny tekst źródła
Streszczenie:
The poly(A)-binding protein (PABP) is the major mRNA-binding protein in eukaryotes, and it is essential for viability of the yeast Saccharomyces cerevisiae. The amino acid sequence of the protein indicates that it consists of four ribonucleoprotein consensus sequence-containing RNA-binding domains (RBDs I, II, III, and IV) and a proline-rich auxiliary domain at the carboxyl terminus. We produced different parts of the S. cerevisiae PABP and studied their binding to poly(A) and other ribohomopolymers in vitro. We found that none of the individual RBDs of the protein bind poly(A) specifically or efficiently. Contiguous two-domain combinations were required for efficient RNA binding, and each pairwise combination (I/II, II/III, and III/IV) had a distinct RNA-binding activity. Specific poly(A)-binding activity was found only in the two amino-terminal RBDs (I/II) which, interestingly, are dispensable for viability of yeast cells, whereas the activity that is sufficient to rescue lethality of a PABP-deleted strain is in the carboxyl-terminal RBDs (III/IV). We conclude that the PABP is a multifunctional RNA-binding protein that has at least two distinct and separable activities: RBDs I/II, which most likely function in binding the PABP to mRNA through the poly(A) tail, and RBDs III/IV, which may function through binding either to a different part of the same mRNA molecule or to other RNA(s).
Style APA, Harvard, Vancouver, ISO itp.
25

Burd, C. G., E. L. Matunis i G. Dreyfuss. "The multiple RNA-binding domains of the mRNA poly(A)-binding protein have different RNA-binding activities." Molecular and Cellular Biology 11, nr 7 (lipiec 1991): 3419–24. http://dx.doi.org/10.1128/mcb.11.7.3419.

Pełny tekst źródła
Streszczenie:
The poly(A)-binding protein (PABP) is the major mRNA-binding protein in eukaryotes, and it is essential for viability of the yeast Saccharomyces cerevisiae. The amino acid sequence of the protein indicates that it consists of four ribonucleoprotein consensus sequence-containing RNA-binding domains (RBDs I, II, III, and IV) and a proline-rich auxiliary domain at the carboxyl terminus. We produced different parts of the S. cerevisiae PABP and studied their binding to poly(A) and other ribohomopolymers in vitro. We found that none of the individual RBDs of the protein bind poly(A) specifically or efficiently. Contiguous two-domain combinations were required for efficient RNA binding, and each pairwise combination (I/II, II/III, and III/IV) had a distinct RNA-binding activity. Specific poly(A)-binding activity was found only in the two amino-terminal RBDs (I/II) which, interestingly, are dispensable for viability of yeast cells, whereas the activity that is sufficient to rescue lethality of a PABP-deleted strain is in the carboxyl-terminal RBDs (III/IV). We conclude that the PABP is a multifunctional RNA-binding protein that has at least two distinct and separable activities: RBDs I/II, which most likely function in binding the PABP to mRNA through the poly(A) tail, and RBDs III/IV, which may function through binding either to a different part of the same mRNA molecule or to other RNA(s).
Style APA, Harvard, Vancouver, ISO itp.
26

Maticzka, Daniel, Sita J. Lange, Fabrizio Costa i Rolf Backofen. "GraphProt: modeling binding preferences of RNA-binding proteins". Genome Biology 15, nr 1 (2014): R17. http://dx.doi.org/10.1186/gb-2014-15-1-r17.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Yu, Hui, Jing Wang, Quanhu Sheng, Qi Liu i Yu Shyr. "beRBP: binding estimation for human RNA-binding proteins". Nucleic Acids Research 47, nr 5 (27.12.2018): e26-e26. http://dx.doi.org/10.1093/nar/gky1294.

Pełny tekst źródła
Streszczenie:
Abstract Identifying binding targets of RNA-binding proteins (RBPs) can greatly facilitate our understanding of their functional mechanisms. Most computational methods employ machine learning to train classifiers on either RBP-specific targets or pooled RBP–RNA interactions. The former strategy is more powerful, but it only applies to a few RBPs with a large number of known targets; conversely, the latter strategy sacrifices prediction accuracy for a wider application, since specific interaction features are inevitably obscured through pooling heterogeneous datasets. Here, we present beRBP, a dual approach to predict human RBP–RNA interaction given PWM of a RBP and one RNA sequence. Based on Random Forests, beRBP not only builds a specific model for each RBP with a decent number of known targets, but also develops a general model for RBPs with limited or null known targets. The specific and general models both compared well with existing methods on three benchmark datasets. Notably, the general model achieved a better performance than existing methods on most novel RBPs. Overall, as a composite solution overarching the RBP-specific and RBP-General strategies, beRBP is a promising tool for human RBP binding estimation with good prediction accuracy and a broad application scope.
Style APA, Harvard, Vancouver, ISO itp.
28

Ciafrè, Silvia Anna, i Silvia Galardi. "microRNAs and RNA-binding proteins". RNA Biology 10, nr 6 (czerwiec 2013): 934–42. http://dx.doi.org/10.4161/rna.24641.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

DeLisle, A. J. "RNA-Binding Protein from Arabidopsis". Plant Physiology 102, nr 1 (1.05.1993): 313–14. http://dx.doi.org/10.1104/pp.102.1.313.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Tang, Lei. "Examining global RNA-binding proteomes". Nature Methods 16, nr 2 (30.01.2019): 144. http://dx.doi.org/10.1038/s41592-019-0321-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Strack, Rita. "Predicting RNA–protein binding affinity". Nature Methods 16, nr 6 (30.05.2019): 460. http://dx.doi.org/10.1038/s41592-019-0445-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Berens, Christian, Alison Thain i Renée Schroeder. "A tetracycline-binding RNA aptamer". Bioorganic & Medicinal Chemistry 9, nr 10 (październik 2001): 2549–56. http://dx.doi.org/10.1016/s0968-0896(01)00063-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Zamore, Phillip D., Maria L. Zapp i Michael R. Green. "RNA binding: βS and basics". Nature 348, nr 6301 (grudzień 1990): 485–86. http://dx.doi.org/10.1038/348485a0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Antson, Alfred A. "Single stranded RNA binding proteins". Current Opinion in Structural Biology 10, nr 1 (luty 2000): 87–94. http://dx.doi.org/10.1016/s0959-440x(99)00054-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Nafisi, Sh, A. Shadaloi, A. Feizbakhsh i H. A. Tajmir-Riahi. "RNA binding to antioxidant flavonoids". Journal of Photochemistry and Photobiology B: Biology 94, nr 1 (styczeń 2009): 1–7. http://dx.doi.org/10.1016/j.jphotobiol.2008.08.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Luo, Zheng, Qin Yang i Li Yang. "RNA Structure Switches RBP Binding". Molecular Cell 64, nr 2 (październik 2016): 219–20. http://dx.doi.org/10.1016/j.molcel.2016.10.006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Purnell, B. A. "Noncoding RNA helps protein binding". Science 350, nr 6263 (19.11.2015): 923–25. http://dx.doi.org/10.1126/science.350.6263.923-o.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Holmqvist, Erik, i Jörg Vogel. "RNA-binding proteins in bacteria". Nature Reviews Microbiology 16, nr 10 (11.07.2018): 601–15. http://dx.doi.org/10.1038/s41579-018-0049-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

ARNEZ, JOHN G., i JEAN CAVARELLI. "Structures of RNA-binding proteins". Quarterly Reviews of Biophysics 30, nr 3 (sierpień 1997): 195–240. http://dx.doi.org/10.1017/s0033583597003351.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Toth, Miklos. "RNA binding proteins in epilepsy". Gene Function & Disease 2, nr 2-3 (październik 2001): 95–98. http://dx.doi.org/10.1002/1438-826x(200110)2:2/3<95::aid-gnfd95>3.0.co;2-i.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

De Conti, Laura, Marco Baralle i Emanuele Buratti. "Neurodegeneration and RNA-binding proteins". Wiley Interdisciplinary Reviews: RNA 8, nr 2 (22.09.2016): e1394. http://dx.doi.org/10.1002/wrna.1394.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Copeland, Paul R., i Donna M. Driscoll. "RNA binding proteins and selenocysteine". BioFactors 14, nr 1-4 (2001): 11–16. http://dx.doi.org/10.1002/biof.5520140103.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Choi, Kwang-Ho, Seong-Ryul Kim, Sung-Wan Kim, Tae-Won Goo, Seok-Woo Kang i Seoung-Won Park. "Characterization of the RNA binding protein-1 gene promoter of the silkworm silk grands". Journal of Sericultural and Entomological Science 52, nr 1 (30.04.2014): 39–44. http://dx.doi.org/10.7852/jses.2014.52.1.39.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Rouda, Susan, i Emmanuel Skordalakes. "Structure of the RNA-Binding Domain of Telomerase: Implications for RNA Recognition and Binding". Structure 15, nr 11 (listopad 2007): 1403–12. http://dx.doi.org/10.1016/j.str.2007.09.007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Ginisty, Hervé, François Amalric i Philippe Bouvet. "Two Different Combinations of RNA-binding Domains Determine the RNA Binding Specificity of Nucleolin". Journal of Biological Chemistry 276, nr 17 (18.01.2001): 14338–43. http://dx.doi.org/10.1074/jbc.m011120200.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Tran, Kiet, Michelle Arkin i Peter Beal. "Tethering in RNA: An RNA-Binding Fragment Discovery Tool". Molecules 20, nr 3 (4.03.2015): 4148–61. http://dx.doi.org/10.3390/molecules20034148.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Li, Xinyi, Wenchen Pu, Song Chen i Yong Peng. "Therapeutic targeting of RNA-binding protein by RNA-PROTAC". Molecular Therapy 29, nr 6 (czerwiec 2021): 1940–42. http://dx.doi.org/10.1016/j.ymthe.2021.04.032.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Fung, P. A., R. Labrecque i T. Pederson. "RNA-dependent phosphorylation of a nuclear RNA binding protein". Proceedings of the National Academy of Sciences 94, nr 4 (18.02.1997): 1064–68. http://dx.doi.org/10.1073/pnas.94.4.1064.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Sohrabi-Jahromi, Salma, i Johannes Söding. "Thermodynamic modeling reveals widespread multivalent binding by RNA-binding proteins". Bioinformatics 37, Supplement_1 (1.07.2021): i308—i316. http://dx.doi.org/10.1093/bioinformatics/btab300.

Pełny tekst źródła
Streszczenie:
Abstract Motivation Understanding how proteins recognize their RNA targets is essential to elucidate regulatory processes in the cell. Many RNA-binding proteins (RBPs) form complexes or have multiple domains that allow them to bind to RNA in a multivalent, cooperative manner. They can thereby achieve higher specificity and affinity than proteins with a single RNA-binding domain. However, current approaches to de novo discovery of RNA binding motifs do not take multivalent binding into account. Results We present Bipartite Motif Finder (BMF), which is based on a thermodynamic model of RBPs with two cooperatively binding RNA-binding domains. We show that bivalent binding is a common strategy among RBPs, yielding higher affinity and sequence specificity. We furthermore illustrate that the spatial geometry between the binding sites can be learned from bound RNA sequences. These discovered bipartite motifs are consistent with previously known motifs and binding behaviors. Our results demonstrate the importance of multivalent binding for RNA-binding proteins and highlight the value of bipartite motif models in representing the multivalency of protein-RNA interactions. Availability and implementation BMF source code is available at https://github.com/soedinglab/bipartite_motif_finder under a GPL license. The BMF web server is accessible at https://bmf.soedinglab.org. Supplementary information Supplementary data are available at Bioinformatics online.
Style APA, Harvard, Vancouver, ISO itp.
50

Si, Jingna, Jing Cui, Jin Cheng i Rongling Wu. "Computational Prediction of RNA-Binding Proteins and Binding Sites". International Journal of Molecular Sciences 16, nr 11 (3.11.2015): 26303–17. http://dx.doi.org/10.3390/ijms161125952.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii