Artykuły w czasopismach na temat „RL ALGORITHMS”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „RL ALGORITHMS”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Lahande, Prathamesh, Parag Kaveri i Jatinderkumar Saini. "Reinforcement Learning for Reducing the Interruptions and Increasing Fault Tolerance in the Cloud Environment". Informatics 10, nr 3 (2.08.2023): 64. http://dx.doi.org/10.3390/informatics10030064.
Pełny tekst źródłaTrella, Anna L., Kelly W. Zhang, Inbal Nahum-Shani, Vivek Shetty, Finale Doshi-Velez i Susan A. Murphy. "Designing Reinforcement Learning Algorithms for Digital Interventions: Pre-Implementation Guidelines". Algorithms 15, nr 8 (22.07.2022): 255. http://dx.doi.org/10.3390/a15080255.
Pełny tekst źródłaRodríguez Sánchez, Francisco, Ildeberto Santos-Ruiz, Joaquín Domínguez-Zenteno i Francisco Ronay López-Estrada. "Control Applications Using Reinforcement Learning: An Overview". Memorias del Congreso Nacional de Control Automático 5, nr 1 (17.10.2022): 67–72. http://dx.doi.org/10.58571/cnca.amca.2022.019.
Pełny tekst źródłaAbbass, Mahmoud Abdelkader Bashery, i Hyun-Soo Kang. "Drone Elevation Control Based on Python-Unity Integrated Framework for Reinforcement Learning Applications". Drones 7, nr 4 (24.03.2023): 225. http://dx.doi.org/10.3390/drones7040225.
Pełny tekst źródłaMann, Timothy, i Yoonsuck Choe. "Scaling Up Reinforcement Learning through Targeted Exploration". Proceedings of the AAAI Conference on Artificial Intelligence 25, nr 1 (4.08.2011): 435–40. http://dx.doi.org/10.1609/aaai.v25i1.7929.
Pełny tekst źródłaCheng, Richard, Gábor Orosz, Richard M. Murray i Joel W. Burdick. "End-to-End Safe Reinforcement Learning through Barrier Functions for Safety-Critical Continuous Control Tasks". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17.07.2019): 3387–95. http://dx.doi.org/10.1609/aaai.v33i01.33013387.
Pełny tekst źródłaKirsch, Louis, Sebastian Flennerhag, Hado van Hasselt, Abram Friesen, Junhyuk Oh i Yutian Chen. "Introducing Symmetries to Black Box Meta Reinforcement Learning". Proceedings of the AAAI Conference on Artificial Intelligence 36, nr 7 (28.06.2022): 7202–10. http://dx.doi.org/10.1609/aaai.v36i7.20681.
Pełny tekst źródłaKim, Hyun-Su, i Uksun Kim. "Development of a Control Algorithm for a Semi-Active Mid-Story Isolation System Using Reinforcement Learning". Applied Sciences 13, nr 4 (4.02.2023): 2053. http://dx.doi.org/10.3390/app13042053.
Pełny tekst źródłaPrakash, Kritika, Fiza Husain, Praveen Paruchuri i Sujit Gujar. "How Private Is Your RL Policy? An Inverse RL Based Analysis Framework". Proceedings of the AAAI Conference on Artificial Intelligence 36, nr 7 (28.06.2022): 8009–16. http://dx.doi.org/10.1609/aaai.v36i7.20772.
Pełny tekst źródłaNiazi, Abdolkarim, Norizah Redzuan, Raja Ishak Raja Hamzah i Sara Esfandiari. "Improvement on Supporting Machine Learning Algorithm for Solving Problem in Immediate Decision Making". Advanced Materials Research 566 (wrzesień 2012): 572–79. http://dx.doi.org/10.4028/www.scientific.net/amr.566.572.
Pełny tekst źródłaMu, Tong, Georgios Theocharous, David Arbour i Emma Brunskill. "Constraint Sampling Reinforcement Learning: Incorporating Expertise for Faster Learning". Proceedings of the AAAI Conference on Artificial Intelligence 36, nr 7 (28.06.2022): 7841–49. http://dx.doi.org/10.1609/aaai.v36i7.20753.
Pełny tekst źródłaKołota, Jakub, i Turhan Can Kargin. "Comparison of Various Reinforcement Learning Environments in the Context of Continuum Robot Control". Applied Sciences 13, nr 16 (11.08.2023): 9153. http://dx.doi.org/10.3390/app13169153.
Pełny tekst źródłaJang, Sun-Ho, Woo-Jin Ahn, Yu-Jin Kim, Hyung-Gil Hong, Dong-Sung Pae i Myo-Taeg Lim. "Stable and Efficient Reinforcement Learning Method for Avoidance Driving of Unmanned Vehicles". Electronics 12, nr 18 (6.09.2023): 3773. http://dx.doi.org/10.3390/electronics12183773.
Pełny tekst źródłaPeng, Zhiyong, Changlin Han, Yadong Liu i Zongtan Zhou. "Weighted Policy Constraints for Offline Reinforcement Learning". Proceedings of the AAAI Conference on Artificial Intelligence 37, nr 8 (26.06.2023): 9435–43. http://dx.doi.org/10.1609/aaai.v37i8.26130.
Pełny tekst źródłaTessler, Chen, Yuval Shpigelman, Gal Dalal, Amit Mandelbaum, Doron Haritan Kazakov, Benjamin Fuhrer, Gal Chechik i Shie Mannor. "Reinforcement Learning for Datacenter Congestion Control". Proceedings of the AAAI Conference on Artificial Intelligence 36, nr 11 (28.06.2022): 12615–21. http://dx.doi.org/10.1609/aaai.v36i11.21535.
Pełny tekst źródłaJIANG, JU, MOHAMED S. KAMEL i LEI CHEN. "AGGREGATION OF MULTIPLE REINFORCEMENT LEARNING ALGORITHMS". International Journal on Artificial Intelligence Tools 15, nr 05 (październik 2006): 855–61. http://dx.doi.org/10.1142/s0218213006002990.
Pełny tekst źródłaChen, Feng, Chenghe Wang, Fuxiang Zhang, Hao Ding, Qiaoyong Zhong, Shiliang Pu i Zongzhang Zhang. "Towards Deployment-Efficient and Collision-Free Multi-Agent Path Finding (Student Abstract)". Proceedings of the AAAI Conference on Artificial Intelligence 37, nr 13 (26.06.2023): 16182–83. http://dx.doi.org/10.1609/aaai.v37i13.26951.
Pełny tekst źródłaGuo, Kun, i Qishan Zhang. "A Discrete Artificial Bee Colony Algorithm for the Reverse Logistics Location and Routing Problem". International Journal of Information Technology & Decision Making 16, nr 05 (wrzesień 2017): 1339–57. http://dx.doi.org/10.1142/s0219622014500126.
Pełny tekst źródłaPadakandla, Sindhu. "A Survey of Reinforcement Learning Algorithms for Dynamically Varying Environments". ACM Computing Surveys 54, nr 6 (lipiec 2021): 1–25. http://dx.doi.org/10.1145/3459991.
Pełny tekst źródłaGaon, Maor, i Ronen Brafman. "Reinforcement Learning with Non-Markovian Rewards". Proceedings of the AAAI Conference on Artificial Intelligence 34, nr 04 (3.04.2020): 3980–87. http://dx.doi.org/10.1609/aaai.v34i04.5814.
Pełny tekst źródłaSun, Peiquan, Wengang Zhou i Houqiang Li. "Attentive Experience Replay". Proceedings of the AAAI Conference on Artificial Intelligence 34, nr 04 (3.04.2020): 5900–5907. http://dx.doi.org/10.1609/aaai.v34i04.6049.
Pełny tekst źródłaChen, Zaiwei. "A Unified Lyapunov Framework for Finite-Sample Analysis of Reinforcement Learning Algorithms". ACM SIGMETRICS Performance Evaluation Review 50, nr 3 (30.12.2022): 12–15. http://dx.doi.org/10.1145/3579342.3579346.
Pełny tekst źródłaYau, Kok-Lim Alvin, Geong-Sen Poh, Su Fong Chien i Hasan A. A. Al-Rawi. "Application of Reinforcement Learning in Cognitive Radio Networks: Models and Algorithms". Scientific World Journal 2014 (2014): 1–23. http://dx.doi.org/10.1155/2014/209810.
Pełny tekst źródłaTessler, Chen, Yuval Shpigelman, Gal Dalal, Amit Mandelbaum, Doron Haritan Kazakov, Benjamin Fuhrer, Gal Chechik i Shie Mannor. "Reinforcement Learning for Datacenter Congestion Control". ACM SIGMETRICS Performance Evaluation Review 49, nr 2 (17.01.2022): 43–46. http://dx.doi.org/10.1145/3512798.3512815.
Pełny tekst źródłaJin, Zengwang, Menglu Ma, Shuting Zhang, Yanyan Hu, Yanning Zhang i Changyin Sun. "Secure State Estimation of Cyber-Physical System under Cyber Attacks: Q-Learning vs. SARSA". Electronics 11, nr 19 (1.10.2022): 3161. http://dx.doi.org/10.3390/electronics11193161.
Pełny tekst źródłaLi, Shaodong, Xiaogang Yuan i Jie Niu. "Robotic Peg-in-Hole Assembly Strategy Research Based on Reinforcement Learning Algorithm". Applied Sciences 12, nr 21 (3.11.2022): 11149. http://dx.doi.org/10.3390/app122111149.
Pełny tekst źródłaPan, Yaozong, Jian Zhang, Chunhui Yuan i Haitao Yang. "Supervised Reinforcement Learning via Value Function". Symmetry 11, nr 4 (24.04.2019): 590. http://dx.doi.org/10.3390/sym11040590.
Pełny tekst źródłaKabanda, Professor Gabriel, Colletor Tendeukai Chipfumbu i Tinashe Chingoriwo. "A Reinforcement Learning Paradigm for Cybersecurity Education and Training". Oriental journal of computer science and technology 16, nr 01 (30.05.2023): 12–45. http://dx.doi.org/10.13005/ojcst16.01.02.
Pełny tekst źródłaYousif, Ayman Basheer, Hassan Jaleel Hassan i Gaida Muttasher. "Applying reinforcement learning for random early detaction algorithm in adaptive queue management systems". Indonesian Journal of Electrical Engineering and Computer Science 26, nr 3 (1.06.2022): 1684. http://dx.doi.org/10.11591/ijeecs.v26.i3.pp1684-1691.
Pełny tekst źródłaSzita, István, i András Lörincz. "Learning Tetris Using the Noisy Cross-Entropy Method". Neural Computation 18, nr 12 (grudzień 2006): 2936–41. http://dx.doi.org/10.1162/neco.2006.18.12.2936.
Pełny tekst źródłaYe, Weicheng, i Dangxing Chen. "Analysis of Performance Measure in Q Learning with UCB Exploration". Mathematics 10, nr 4 (12.02.2022): 575. http://dx.doi.org/10.3390/math10040575.
Pełny tekst źródłaLin, Xingbin, Deyu Yuan i Xifei Li. "Reinforcement Learning with Dual Safety Policies for Energy Savings in Building Energy Systems". Buildings 13, nr 3 (21.02.2023): 580. http://dx.doi.org/10.3390/buildings13030580.
Pełny tekst źródłaLi, Luchen, i A. Aldo Faisal. "Bayesian Distributional Policy Gradients". Proceedings of the AAAI Conference on Artificial Intelligence 35, nr 10 (18.05.2021): 8429–37. http://dx.doi.org/10.1609/aaai.v35i10.17024.
Pełny tekst źródłaGrewal, Yashvir S., Frits De Nijs i Sarah Goodwin. "Evaluating Meta-Reinforcement Learning through a HVAC Control Benchmark (Student Abstract)". Proceedings of the AAAI Conference on Artificial Intelligence 35, nr 18 (18.05.2021): 15785–86. http://dx.doi.org/10.1609/aaai.v35i18.17889.
Pełny tekst źródłaVillalpando-Hernandez, Rafaela, Cesar Vargas-Rosales i David Munoz-Rodriguez. "Localization Algorithm for 3D Sensor Networks: A Recursive Data Fusion Approach". Sensors 21, nr 22 (17.11.2021): 7626. http://dx.doi.org/10.3390/s21227626.
Pełny tekst źródłaZhao, Richard, i Duane Szafron. "Learning Character Behaviors Using Agent Modeling in Games". Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment 5, nr 1 (16.10.2009): 179–85. http://dx.doi.org/10.1609/aiide.v5i1.12369.
Pełny tekst źródłaHu i Xu. "Fuzzy Reinforcement Learning and Curriculum Transfer Learning for Micromanagement in Multi-Robot Confrontation". Information 10, nr 11 (2.11.2019): 341. http://dx.doi.org/10.3390/info10110341.
Pełny tekst źródłaShen, Haocheng, Jason Yosinski, Petar Kormushev, Darwin G. Caldwell i Hod Lipson. "Learning Fast Quadruped Robot Gaits with the RL PoWER Spline Parameterization". Cybernetics and Information Technologies 12, nr 3 (1.09.2012): 66–75. http://dx.doi.org/10.2478/cait-2012-0022.
Pełny tekst źródłaShaposhnikova, Sofiia, i Dmytro Omelian. "TOWARDS EFFECTIVE STRATEGIES FOR MOBILE ROBOT USING REINFORCEMENT LEARNING AND GRAPH ALGORITHMS". Automation of technological and business processes 15, nr 2 (19.06.2023): 24–34. http://dx.doi.org/10.15673/atbp.v15i2.2522.
Pełny tekst źródłaLiao, Hanlin. "Urban Intersection Simulation and Verification via Deep Reinforcement Learning Algorithms". Journal of Physics: Conference Series 2435, nr 1 (1.02.2023): 012019. http://dx.doi.org/10.1088/1742-6596/2435/1/012019.
Pełny tekst źródłaDing, Yuhao, Ming Jin i Javad Lavaei. "Non-stationary Risk-Sensitive Reinforcement Learning: Near-Optimal Dynamic Regret, Adaptive Detection, and Separation Design". Proceedings of the AAAI Conference on Artificial Intelligence 37, nr 6 (26.06.2023): 7405–13. http://dx.doi.org/10.1609/aaai.v37i6.25901.
Pełny tekst źródłaSarkar, Soumyadip. "Quantitative Trading using Deep Q Learning". International Journal for Research in Applied Science and Engineering Technology 11, nr 4 (30.04.2023): 731–38. http://dx.doi.org/10.22214/ijraset.2023.50170.
Pełny tekst źródłaZhang, Ningyan. "Analysis of reinforce learning in medical treatment". Applied and Computational Engineering 5, nr 1 (14.06.2023): 48–53. http://dx.doi.org/10.54254/2755-2721/5/20230527.
Pełny tekst źródłaPuspitasari, Annisa Anggun, i Byung Moo Lee. "A Survey on Reinforcement Learning for Reconfigurable Intelligent Surfaces in Wireless Communications". Sensors 23, nr 5 (24.02.2023): 2554. http://dx.doi.org/10.3390/s23052554.
Pełny tekst źródłaDelipetrev, Blagoj, Andreja Jonoski i Dimitri P. Solomatine. "A novel nested stochastic dynamic programming (nSDP) and nested reinforcement learning (nRL) algorithm for multipurpose reservoir optimization". Journal of Hydroinformatics 19, nr 1 (17.09.2016): 47–61. http://dx.doi.org/10.2166/hydro.2016.243.
Pełny tekst źródłaWang, Mengmei. "Optimizing Multitask Assignment of Internet of Things Devices by Reinforcement Learning in Mobile Crowdsensing Scenes". Security and Communication Networks 2022 (17.08.2022): 1–10. http://dx.doi.org/10.1155/2022/6202237.
Pełny tekst źródłaГайнетдинов, А. Ф. "NeRF IN REINFORCEMENT LEARNING FOR IMAGE RECOGNITION". Южно-Сибирский научный вестник, nr 2(48) (30.04.2023): 63–72. http://dx.doi.org/10.25699/sssb.2023.48.2.011.
Pełny tekst źródłaNicola, Marcel, i Claudiu-Ionel Nicola. "Improvement of Linear and Nonlinear Control for PMSM Using Computational Intelligence and Reinforcement Learning". Mathematics 10, nr 24 (9.12.2022): 4667. http://dx.doi.org/10.3390/math10244667.
Pełny tekst źródłaYou, Haoyi, Beichen Yu, Haiming Jin, Zhaoxing Yang i Jiahui Sun. "User-Oriented Robust Reinforcement Learning". Proceedings of the AAAI Conference on Artificial Intelligence 37, nr 12 (26.06.2023): 15269–77. http://dx.doi.org/10.1609/aaai.v37i12.26781.
Pełny tekst źródłaYang, Bin, Muhammad Haseeb Arshad i Qing Zhao. "Packet-Level and Flow-Level Network Intrusion Detection Based on Reinforcement Learning and Adversarial Training". Algorithms 15, nr 12 (30.11.2022): 453. http://dx.doi.org/10.3390/a15120453.
Pełny tekst źródła