Gotowa bibliografia na temat „Ribosomal biogenesis”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Ribosomal biogenesis”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Ribosomal biogenesis"

1

Moraleva, Anastasia A., Alexander S. Deryabin, Yury P. Rubtsov, Maria P. Rubtsova i Olga A. Dontsova. "Eukaryotic Ribosome Biogenesis: The 40S Subunit". Acta Naturae 14, nr 1 (10.05.2022): 14–30. http://dx.doi.org/10.32607/actanaturae.11540.

Pełny tekst źródła
Streszczenie:
The formation of eukaryotic ribosomes is a sequential process of ribosomal precursors maturation in the nucleolus, nucleoplasm, and cytoplasm. Hundreds of ribosomal biogenesis factors ensure the accurate processing and formation of the ribosomal RNAs tertiary structure, and they interact with ribosomal proteins. Most of what we know about the ribosome assembly has been derived from yeast cell studies, and the mechanisms of ribosome biogenesis in eukaryotes are considered quite conservative. Although the main stages of ribosome biogenesis are similar across different groups of eukaryotes, this process in humans is much more complicated owing to the larger size of the ribosomes and pre-ribosomes and the emergence of regulatory pathways that affect their assembly and function. Many of the factors involved in the biogenesis of human ribosomes have been identified using genome-wide screening based on RNA interference. This review addresses the key aspects of yeast and human ribosome biogenesis, using the 40S subunit as an example. The mechanisms underlying these differences are still not well understood, because, unlike yeast, there are no effective methods for characterizing pre-ribosomal complexes in humans. Understanding the mechanisms of human ribosome assembly would have an incidence on a growing number of genetic diseases (ribosomopathies) caused by mutations in the genes encoding ribosomal proteins and ribosome biogenesis factors. In addition, there is evidence that ribosome assembly is regulated by oncogenic signaling pathways, and that defects in the ribosome biogenesis are linked to the activation of tumor suppressors.
Style APA, Harvard, Vancouver, ISO itp.
2

Moraleva, Anastasia A., Alexander S. Deryabin, Yury P. Rubtsov, Maria P. Rubtsova i Olga A. Dontsova. "Eukaryotic Ribosome Biogenesis: The 60S Subunit". Acta Naturae 14, nr 2 (21.07.2022): 39–49. http://dx.doi.org/10.32607/actanaturae.11541.

Pełny tekst źródła
Streszczenie:
Ribosome biogenesis is consecutive coordinated maturation of ribosomal precursors in the nucleolus, nucleoplasm, and cytoplasm. The formation of mature ribosomal subunits involves hundreds of ribosomal biogenesis factors that ensure ribosomal RNA processing, tertiary structure, and interaction with ribosomal proteins. Although the main features and stages of ribosome biogenesis are conservative among different groups of eukaryotes, this process in human cells has become more complicated due to the larger size of the ribosomes and pre-ribosomes and intricate regulatory pathways affecting their assembly and function. Many of the factors involved in the biogenesis of human ribosomes have been identified using genome-wide screening based on RNA interference. A previous part of this review summarized recent data on the processing of the primary rRNA transcript and compared the maturation of the small 40S subunit in yeast and human cells. This part of the review focuses on the biogenesis of the large 60S subunit of eukaryotic ribosomes.
Style APA, Harvard, Vancouver, ISO itp.
3

Sulima, Sergey, Kim Kampen i Kim De Keersmaecker. "Cancer Biogenesis in Ribosomopathies". Cells 8, nr 3 (11.03.2019): 229. http://dx.doi.org/10.3390/cells8030229.

Pełny tekst źródła
Streszczenie:
Ribosomopathies are congenital diseases with defects in ribosome assembly and are characterized by elevated cancer risks. Additionally, somatic mutations in ribosomal proteins have recently been linked to a variety of cancers. Despite a clear correlation between ribosome defects and cancer, the molecular mechanisms by which these defects promote tumorigenesis are unclear. In this review, we focus on the emerging mechanisms that link ribosomal defects in ribosomopathies to cancer progression. This includes functional “onco-specialization” of mutant ribosomes, extra-ribosomal consequences of mutations in ribosomal proteins and ribosome assembly factors, and effects of ribosomal mutations on cellular stress and metabolism. We integrate some of these recent findings in a single model that can partially explain the paradoxical transition from hypo- to hyperproliferation phenotypes, as observed in ribosomopathies. Finally, we discuss the current and potential strategies, and the associated challenges for therapeutic intervention in ribosome-mutant diseases.
Style APA, Harvard, Vancouver, ISO itp.
4

Pecoraro, Annalisa, Martina Pagano, Giulia Russo i Annapina Russo. "Ribosome Biogenesis and Cancer: Overview on Ribosomal Proteins". International Journal of Molecular Sciences 22, nr 11 (23.05.2021): 5496. http://dx.doi.org/10.3390/ijms22115496.

Pełny tekst źródła
Streszczenie:
Cytosolic ribosomes (cytoribosomes) are macromolecular ribonucleoprotein complexes that are assembled from ribosomal RNA and ribosomal proteins, which are essential for protein biosynthesis. Mitochondrial ribosomes (mitoribosomes) perform translation of the proteins essential for the oxidative phosphorylation system. The biogenesis of cytoribosomes and mitoribosomes includes ribosomal RNA processing, modification and binding to ribosomal proteins and is assisted by numerous biogenesis factors. This is a major energy-consuming process in the cell and, therefore, is highly coordinated and sensitive to several cellular stressors. In mitochondria, the regulation of mitoribosome biogenesis is essential for cellular respiration, a process linked to cell growth and proliferation. This review briefly overviews the key stages of cytosolic and mitochondrial ribosome biogenesis; summarizes the main steps of ribosome biogenesis alterations occurring during tumorigenesis, highlighting the changes in the expression level of cytosolic ribosomal proteins (CRPs) and mitochondrial ribosomal proteins (MRPs) in different types of tumors; focuses on the currently available information regarding the extra-ribosomal functions of CRPs and MRPs correlated to cancer; and discusses the role of CRPs and MRPs as biomarkers and/or molecular targets in cancer treatment.
Style APA, Harvard, Vancouver, ISO itp.
5

Konikkat, Salini, i John L. Woolford,. "Principles of 60S ribosomal subunit assembly emerging from recent studies in yeast". Biochemical Journal 474, nr 2 (6.01.2017): 195–214. http://dx.doi.org/10.1042/bcj20160516.

Pełny tekst źródła
Streszczenie:
Ribosome biogenesis requires the intertwined processes of folding, modification, and processing of ribosomal RNA, together with binding of ribosomal proteins. In eukaryotic cells, ribosome assembly begins in the nucleolus, continues in the nucleoplasm, and is not completed until after nascent particles are exported to the cytoplasm. The efficiency and fidelity of ribosome biogenesis are facilitated by >200 assembly factors and ∼76 different small nucleolar RNAs. The pathway is driven forward by numerous remodeling events to rearrange the ribonucleoprotein architecture of pre-ribosomes. Here, we describe principles of ribosome assembly that have emerged from recent studies of biogenesis of the large ribosomal subunit in the yeast Saccharomyces cerevisiae. We describe tools that have empowered investigations of ribosome biogenesis, and then summarize recent discoveries about each of the consecutive steps of subunit assembly.
Style APA, Harvard, Vancouver, ISO itp.
6

Sleiman, Sophie, i Francois Dragon. "Recent Advances on the Structure and Function of RNA Acetyltransferase Kre33/NAT10". Cells 8, nr 9 (5.09.2019): 1035. http://dx.doi.org/10.3390/cells8091035.

Pełny tekst źródła
Streszczenie:
Ribosome biogenesis is one of the most energy demanding processes in the cell. In eukaryotes, the main steps of this process occur in the nucleolus and include pre-ribosomal RNA (pre-rRNA) processing, post-transcriptional modifications, and assembly of many non-ribosomal factors and ribosomal proteins in order to form mature and functional ribosomes. In yeast and humans, the nucleolar RNA acetyltransferase Kre33/NAT10 participates in different maturation events, such as acetylation and processing of 18S rRNA, and assembly of the 40S ribosomal subunit. Here, we review the structural and functional features of Kre33/NAT10 RNA acetyltransferase, and we underscore the importance of this enzyme in ribosome biogenesis, as well as in acetylation of non-ribosomal targets. We also report on the role of human NAT10 in Hutchinson–Gilford progeria syndrome.
Style APA, Harvard, Vancouver, ISO itp.
7

Lavdovskaia, Elena, Kärt Denks, Franziska Nadler, Emely Steube, Andreas Linden, Henning Urlaub, Marina V. Rodnina i Ricarda Richter-Dennerlein. "Dual function of GTPBP6 in biogenesis and recycling of human mitochondrial ribosomes". Nucleic Acids Research 48, nr 22 (2.12.2020): 12929–42. http://dx.doi.org/10.1093/nar/gkaa1132.

Pełny tekst źródła
Streszczenie:
Abstract Translation and ribosome biogenesis in mitochondria require auxiliary factors that ensure rapid and accurate synthesis of mitochondrial proteins. Defects in translation are associated with oxidative phosphorylation deficiency and cause severe human diseases, but the exact roles of mitochondrial translation-associated factors are not known. Here we identify the functions of GTPBP6, a homolog of the bacterial ribosome-recycling factor HflX, in human mitochondria. Similarly to HflX, GTPBP6 facilitates the dissociation of ribosomes in vitro and in vivo. In contrast to HflX, GTPBP6 is also required for the assembly of mitochondrial ribosomes. GTPBP6 ablation leads to accumulation of late assembly intermediate(s) of the large ribosomal subunit containing ribosome biogenesis factors MTERF4, NSUN4, MALSU1 and the GTPases GTPBP5, GTPBP7 and GTPBP10. Our data show that GTPBP6 has a dual function acting in ribosome recycling and biogenesis. These findings contribute to our understanding of large ribosomal subunit assembly as well as ribosome recycling pathway in mitochondria.
Style APA, Harvard, Vancouver, ISO itp.
8

Phan, Tamara, Fatima Khalid i Sebastian Iben. "Nucleolar and Ribosomal Dysfunction—A Common Pathomechanism in Childhood Progerias?" Cells 8, nr 6 (4.06.2019): 534. http://dx.doi.org/10.3390/cells8060534.

Pełny tekst źródła
Streszczenie:
The nucleolus organizes around the sites of transcription by RNA polymerase I (RNA Pol I). rDNA transcription by this enzyme is the key step of ribosome biogenesis and most of the assembly and maturation processes of the ribosome occur co-transcriptionally. Therefore, disturbances in rRNA transcription and processing translate to ribosomal malfunction. Nucleolar malfunction has recently been described in the classical progeria of childhood, Hutchinson–Gilford syndrome (HGPS), which is characterized by severe signs of premature aging, including atherosclerosis, alopecia, and osteoporosis. A deregulated ribosomal biogenesis with enlarged nucleoli is not only characteristic for HGPS patients, but it is also found in the fibroblasts of “normal” aging individuals. Cockayne syndrome (CS) is also characterized by signs of premature aging, including the loss of subcutaneous fat, alopecia, and cataracts. It has been shown that all genes in which a mutation causes CS, are involved in rDNA transcription by RNA Pol I. A disturbed ribosomal biogenesis affects mitochondria and translates into ribosomes with a reduced translational fidelity that causes endoplasmic reticulum (ER) stress and apoptosis. Therefore, it is speculated that disease-causing disturbances in the process of ribosomal biogenesis may be more common than hitherto anticipated.
Style APA, Harvard, Vancouver, ISO itp.
9

Slimane, Sophie Nait, Virginie Marcel, Tanguy Fenouil, Frédéric Catez, Jean-Christophe Saurin, Philippe Bouvet, Jean-Jacques Diaz i Hichem C. Mertani. "Ribosome Biogenesis Alterations in Colorectal Cancer". Cells 9, nr 11 (27.10.2020): 2361. http://dx.doi.org/10.3390/cells9112361.

Pełny tekst źródła
Streszczenie:
Many studies have focused on understanding the regulation and functions of aberrant protein synthesis in colorectal cancer (CRC), leaving the ribosome, its main effector, relatively underappreciated in CRC. The production of functional ribosomes is initiated in the nucleolus, requires coordinated ribosomal RNA (rRNA) processing and ribosomal protein (RP) assembly, and is frequently hyperactivated to support the needs in protein synthesis essential to withstand unremitting cancer cell growth. This elevated ribosome production in cancer cells includes a strong alteration of ribosome biogenesis homeostasis that represents one of the hallmarks of cancer cells. None of the ribosome production steps escape this cancer-specific dysregulation. This review summarizes the early and late steps of ribosome biogenesis dysregulations described in CRC cell lines, intestinal organoids, CRC stem cells and mouse models, and their possible clinical implications. We highlight how this cancer-related ribosome biogenesis, both at quantitative and qualitative levels, can lead to the synthesis of ribosomes favoring the translation of mRNAs encoding hyperproliferative and survival factors. We also discuss whether cancer-related ribosome biogenesis is a mere consequence of cancer progression or is a causal factor in CRC, and how altered ribosome biogenesis pathways can represent effective targets to kill CRC cells. The association between exacerbated CRC cell growth and alteration of specific steps of ribosome biogenesis is highlighted as a key driver of tumorigenesis, providing promising perspectives for the implementation of predictive biomarkers and the development of new therapeutic drugs.
Style APA, Harvard, Vancouver, ISO itp.
10

Larson, D. E., P. Zahradka i B. H. Sells. "Control points in eucaryotic ribosome biogenesis". Biochemistry and Cell Biology 69, nr 1 (1.01.1991): 5–22. http://dx.doi.org/10.1139/o91-002.

Pełny tekst źródła
Streszczenie:
Ribosome biogenesis in eucaryotic cells involves the coordinated synthesis of four rRNA species, transcribed by RNA polymerase I (18S, 28S, 5.8S) and RNA polymerase III (5S), and approximately 80 ribosomal proteins translated from mRNAs synthesized by RNA polymerase II. Assembly of the ribosomal subunits in the nucleolus, the site of 45S rRNA precursor gene transcription, requires the movement of 5S rRNA and ribosomal proteins from the nucleoplasm and cytoplasm, respectively, to this structure. To integrate these events and ensure the balanced production of individual ribosomal components, different strategies have been developed by eucaryotic organisms in response to a variety of physiological changes. This review presents an overview of the mechanisms modulating the production of ribosomal precursor molecules and the rate of ribosome biogenesis in various biological systems.Key words: rRNA, ribosomal proteins, nucleolus, ribosome.
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Ribosomal biogenesis"

1

Verma, Pali. "The Role of NOL6 in Ribosomal Biogenesis". Thesis, Griffith University, 2015. http://hdl.handle.net/10072/365847.

Pełny tekst źródła
Streszczenie:
NOL6 is a nucleolar protein, highly conserved throughout evolution. Previous studies on NOL6 have linked its nucleolar localization to ribosomal biogenesis. In this study, the role of murine NOL6 in ribosome biogenesis and cell cycle progression was explored. Initially, a number of tools were generated to investigate NOL6 function. This involved raising and purifying polyclonal antibodies against NOL6. Additionally, mammalian expression vectors containing the full length Nol6 a and 13 were created. The sub-nucleolar localisation of NOL6 was observed by confocal microscopy in an attempt to study the expression pattern of NOL6 within the nucleolus. Furthermore, ribosomal biogenesis studies by pulse chase analysis were carried out. In these studies, we have shown that loss of NOL6 expression by RNA interference resulted in a significant reduction of the 47/45S precursor rRNA in NIH3T3. We also found that loss of NOL6 expression within these cells resulted in G1 phase arrest and induction of cell death. These findings demonstrate a previously unknown function ofNOL6 in rRNA processing and cell cycle progression.
Thesis (PhD Doctorate)
Doctor of Philosophy (PhD)
Eskitis Institute for Cell and Molecular Therapies
Science, Environment, Engineering and Technology
Full Text
Style APA, Harvard, Vancouver, ISO itp.
2

Gartmann, Marco. "Structural characterization of ribosomal complexes involved in ribosome biogenesis and protein folding". Diss., lmu, 2010. http://nbn-resolving.de/urn:nbn:de:bvb:19-120476.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Ramesh, Madhumitha. "Analysis of Ribosome Biogenesis from Three Standpoints: Investigating the Roles of Ribosomal RNA, Ribosomal Proteins and Assembly Factors". Research Showcase @ CMU, 2016. http://repository.cmu.edu/dissertations/609.

Pełny tekst źródła
Streszczenie:
Ribosomes are ubiquitous and abundant molecular machines composed of ribosomal RNA (rRNA) and ribosomal proteins (r-proteins). They play a central role in the cell by translating the genetic code in mRNA to form polypeptides. Because of their large size and the complexity of molecular interactions within ribosomes, we do not still fully understand how they are synthesized in the cell. Yet, a thorough knowledge of ribosome biogenesis is crucial to understand cellular homeostasis and various disease states including ribosomopathies and cancer. In addition, ribosomes serve as an interesting paradigm to understand the principles that dictate the formation and function of the many different ribonucleoprotein particles that play vital roles in the cell. In addition to the rRNA and r-protein components, trans-acting assembly factors play indispensable roles in synthesizing functional ribosomes. Fundamentally, ribosome biogenesis is driven by a network of molecular interactions that evolve in time and space, as assembly progresses from the nucleolus to the cytoplasm. We sought to gain a deeper understanding of ribosome biogenesis in Saccharomyces cerevisiae by investigating the molecular interactions that drive ribosome assembly. Recent structural studies have revealed a number of such molecular interactions at high resolution. Based on these, our investigation was carried out from the perspectives of all three players that are involved in constructing ribosomes, with a specific emphasis on eukaryote-specific elements of rRNAs and r-proteins. From the standpoint of rRNA, we performed the first systematic study to investigate the potential functions of nearly all of the eukaryotic rRNA expansion segments in the yeast large ribosomal subunit. We showed that most of them are indispensable and play vital roles in ribosome biogenesis. Based on the steps of ribosome biogenesis in which each of them participates, we showed that there is neighborhood-specific functional clustering of rRNA and r-protein interactions that drive ribosome assembly. Further, we found evidence for possible functional co-evolution of eukaryotic rRNA and eukaryote-specific elements of r-protein. From the standpoint of r-protein, we used rpL5 as a paradigm for constantly evolving molecular interactions as assembly progresses. Apart from recapitulating Diamond-Blackfan anemia missense mutations in yeast, we characterized interactions formed by specific regions of rpL5 and propose that these interactions potentially govern the loading of 5S RNP en bloc to the nascent large ribosomal subunit, to ensure proper rotation of the 5S RNP during biogenesis, and to further recruit proteins necessary for the test drive of subunits in the cytoplasm. From the standpoint of assembly factors, we analyzed a so-called group of ITS2 cluster proteins, Nop15, Cic1 and Rlp7 and identified the extensive protein-protein interactions and analyzed protein-RNA interactions that they make. Using our data, we were able to localize Rlp7 to the ITS2 spacer in the pre-rRNA and to identify potential mechanisms for their function. Having identified a network of molecular interactions, we suggest that these proteins orchestrate proper folding of rRNA through this network, and stabilize and facilitate the early steps of assembly. Further, based on their location in the preribosome, these factors might serve to ensure proper progression of early steps of assembly to enable subsequent processing of the ITS2 spacer in the middle steps, possibly by recruiting the ATPase Has1. Thus, we have investigated early nucleolar and late nuclear steps of ribosome assembly in the light of molecular interactions formed by rRNA, r-protein and assembly factors that participate in eukaryotic ribosome assembly. Lessons that emerged from this study and tools developed in the process provide a starting point for further investigations pertaining to the roles of eukaryote-specific segments of molecules that participate in ribosome biogenesis, and serve as a paradigm for how a dynamic network of molecular interactions can drive the assembly of complex macromolecular structures.
Style APA, Harvard, Vancouver, ISO itp.
4

Burlacu, Elena. "Probing ribosomal RNA structural rearrangements : a time lapse of ribosome assembly dynamics". Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/17072.

Pełny tekst źródła
Streszczenie:
Ribosome synthesis is a very complex and energy consuming process in which pre-ribosomal RNA (pre-rRNA) processing and folding events, sequential binding of ribosomal proteins and the input of approximately 200 trans-acting ribosome assembly factors need to be tightly coordinated. In the yeast Saccharomyces cerevisiae, ribosome assembly starts in the nucleolus with the formation of a very large 90S-sized complex. This ~2.2MDa pre-ribosomal complex is subsequently processed into the 40S and 60S assembly intermediates (pre-40S and pre-60S), which subsequently mature largely independently. Although we have a fairly complete picture of the protein composition of these pre-ribosomes, still very little is known about the rRNA structural rearrangements that take place during the assembly of the 40S and 60S subunits and the role of the ribosome assembly factors in this process. To address this, the Granneman lab developed a method called ChemModSeq, which made it possible to generate nucleotide resolution maps of RNA flexibility in ribonucleoprotein complexes by combining SHAPE chemical probing, high-throughput sequencing and statistical modelling. By applying ChemModSeq to ribosome assembly intermediates, we were able to obtain nucleotide resolution insights into rRNA structural rearrangements during late (cytoplasmic) stages of 40S assembly and for the early (nucleolar) stages of 60S assembly. The results revealed structurally distinct cytoplasmic pre-40S particles in which rRNA restructuring events coincide with the hierarchical dissociation of assembly factors. These rearrangements are required to trigger stable incorporation of a number of ribosomal proteins and the completion of the head domain. Rps17, one of the ribosomal proteins that fully assembled into pre-40S complexes only at a later assembly stage, was further characterized. Surprisingly, my ChemModSeq analyses of nucleolar pre-60S complexes indicated that most of the rRNA folding steps take place at a very specific stage of maturation. One of the most striking observations was the stabilization of 5.8S pre-rRNA region, which coincided with the dissociation of the assembly factor Rrp5 and stable incorporation of a number of ribosomal proteins.
Style APA, Harvard, Vancouver, ISO itp.
5

Gamalinda, Michael. "Ribosomal Proteins Orchestrate the Biogenesis of Eukaryotic Large Ribosomal Subunits in a Sequential Fashion". Research Showcase @ CMU, 2014. http://repository.cmu.edu/dissertations/441.

Pełny tekst źródła
Streszczenie:
Ribosome biogenesis in eukaryotes involves the transcription, folding, and processing of ribosomal RNA (rRNA), as well as the concomitant assembly of ribosomal proteins. Several hundred trans-acting assembly factors also play a role in the complex process of ribosome biogenesis. Investigations of the construction of ribosomes have focused primarily on the roles of these assembly factors. Little is understood about how ribosomal proteins (r-proteins) function in ribosomal subunit biogenesis in vivo, in either prokaryotes or eukaryotes. I began by focusing on a subset of r-proteins surrounding the polypeptide exit tunnel of the large ribosomal subunit in yeast. R-proteins in this neighborhood, namely L17, L26, L35, and L37, are of importance because they fail to assemble with preribosomes when early pre-rRNA processing steps are blocked. I showed that these rproteins are important for the next pre-rRNA processing, cleavage of the ITS2 spacer sequence in 27SB pre-rRNA. Interestingly, I showed that this biogenesis defect is not due to changes in structure of ITS2. Instead, these r-proteins are required for stable recruitment of key assembly factors that function in this event. I then carried out a global survey of the majority of r-proteins in the 60S subunit. I found that co-transcriptional binding of r-proteins influences post-transcriptional stabilization of 60S subunit structural neighborhoods. This led to a model wherein structural domains of eukaryotic large ribosomal subunits are constructed in a hierarchical fashion. Assembly begins at the convex solvent side, followed by the polypeptide exit tunnel, the intersubunit side, and finally the central protuberance. This hierarchy serves as an initial framework to further understand 60S assembly in vivo. I also showed that pre-ribosomes become more stable as assembly proceeds and that the final steps in 60S maturation occur around regions important for ribosome function. My results also support the hypothesis that the formation of the 3’ end of 27S pre-rRNA is important for early steps of 60S assembly occurring near the 5’ end of pre-rRNA. I also studied the functions of conserved and eukaryote-specific extensions of rproteins that are intrinsically disordered. This revealed distinct roles of extensions in 60S subunit biogenesis and supported a model for the sequential binding of globular and then extended domains of r-proteins during ribosome assembly. My surprising finding for a eukaryote-specific r-protein tail highlights the importance of understanding why several yeast r-proteins have evolved extra sequences that are conserved in higher eukaryotes. Together, these investigations revealed important principles governing ribosome assembly. Furthermore, striking similarities and differences between assembly of bacterial and eukaryotic large ribosomal subunits also emerged, providing insights into how these RNA–protein particles evolved.
Style APA, Harvard, Vancouver, ISO itp.
6

G, C. Keshav. "Investigation of the Role of Bacterial Ribosomal RNA Methyltransferase Enzyme RsmC in Ribosome Biogenesis". Kent State University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=kent1621868567263046.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Leplus, Alexis. "Study of factors implicated in small ribosomal subunit biogenesis under differents growth conditions". Doctoral thesis, Universite Libre de Bruxelles, 2010. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210189.

Pełny tekst źródła
Streszczenie:
La biogenèse du ribosome est un processus complexe et dynamique qui nécessite de nombreuses étapes de maturation et de modification des ARNr ainsi que l’assemblage et le transport des RNPs précurseurs. Un ribosome mature contient une centaine de pièces, ARN et protéines confondus, mais son assemblage requiert l’intervention de plus de 400 facteurs de synthèse. De part le coût énergétique important de ce processus, plusieurs voies de régulation interviennent pour contrôler la biogenèse des ribosomes en fonction des conditions nutritives. L’une des voies les plus connue est la voie TOR (Target of rapamycin). Cette voie de régulation agît principalement au niveau de la transcription des différents intervenants de la biogenèse :les ARNr, les protéines ribosomiques mais aussi les facteurs de synthèse. Ces facteurs, ayant une action transitoire dans la maturation des ribosomes, sont, par économie, recyclés pour la synthèse de nouveaux ribosomes. Nous nous sommes donc intéressés au devenir de ces facteurs, plus particulièrement de ceux intervenants dans la biogenèse de la petite sous unité, lorsque les conditions environnementales sont inadaptées à la croissance cellulaire. Ainsi, nous avons pu montré, pour quatre facteurs particuliers :Dim2, Rrp12, Hrr25 et Fap7, que leur localisation est dépendante de la synthèse ribosomique. Ainsi, lors de carence en sources nutritives, l’inhibition de la synthèse et de l’activité ribosomique entraîne un confinement de ces facteurs ribosomiques dans le nucléole ou dans des corps cytoplasmiques. En outre, la localisation particulière des facteurs ribosomiques Hrr25 et Fap7 dans les P-bodies en phase de croissance saturée laisse penser que ces corps cytoplasmiques sont le lieu de dégradation des pré-ribosomes lorsque les carences nutritives perdurent.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Style APA, Harvard, Vancouver, ISO itp.
8

Kim, Sunghan. "Characterization of ribosomal S6 protein phosphorylation and possible control of ribosome biogenesis in arabidopsis cell culture". Connect to this title online, 2004. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1072819298.

Pełny tekst źródła
Streszczenie:
Thesis (Ph. D.)--Ohio State University, 2004.
Title from first page of PDF file. Document formatted into pages; contains xvi, 147 p.; also includes graphics. Includes bibliographical references (p. 128-147).
Style APA, Harvard, Vancouver, ISO itp.
9

MIYOSHI, Masaya, Tetsuya OKAJIMA, Tsukasa MATSUDA, Michiko N. FUKUDA i Daita NADANO. "Bystin in human cancer cells : intracellular localization and function in ribosome biogenesis". Biochemical Society, 2007. http://hdl.handle.net/2237/9306.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Zakari, Musinu. "The SMC loader Scc2 promotes ncRNA biogenesis and translational fidelity in Saccharomyces cerevisiae". Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066148/document.

Pełny tekst źródła
Streszczenie:
Le complexe Scc2-Scc4 est essentiel pour l’association du complexe cohésine sur l’ADN. Les proteines Cohésine génèrent la cohésion entre les chromatides sœurs, ce qui est essentiel pour la ségrégation des chromosomes. Scc2 (également connu sous le nom NIPBL) est muté chez les patients atteints du syndrome de Cornelia de Lange, une maladie multi-organique caractérisée par des anomalies du développement du visage, de la developpement mental cardiaque et du tractus gastro-intestinal. Comment les mutations localisées au niveau du gène codant pour la proteine Scc2 conduisent à des anomalies du développement chez les patients n’a pas encore été élucidé. Une des hypothèses est que la liaison de Scc2 / cohésine à différentes régions du génome a une incidence sur la transcription. Chez la levure de bière, il a été montre que Scc2 se lie aux genes transcrits par l'ARN Pol III (les ARNt et spliceosomals) , ainsi qu‘aux gènes transcrits par l'ARN Pol II codant pour des petits ARN nucléolaires et nucléaires (snARN et snoARNs ) et des gènes de protéines ribosomiques. Nous rapportons ici que Scc2 est important pour l'expression de ces gènes. Scc2 et le régulateur transcriptionnel Paf1 collaborent pour promouvoir la production de Box H / ACA snoARNs qui guident la pseudouridylation des ARN y compris l'ARN ribosomal. Une mutation de Scc2 a été associée à des défauts dans la production d'ARN ribosomal, la biogenèse des ribosomes, et del’épissage. Alors que le mutant Scc2 n'a pas de défaut général de la synthèse protéique, il montre un déphasage accrue et une réduction de l’utilisation du site interne d'entrée ribosomale (IRES)/ coiffe-indépendante. Ces résultats suggèrent que Scc2 favorise normalement un programme d'expression génétique qui prend en charge la fidélité de la traduction. Nous émettons l'hypothèse que le dysfonctionnement de traduction peut contribuer au syndrome de Cornelia de Lange, qui est causé par des mutations dans Scc2
The Scc2-Scc4 complex is essential for loading the cohesin complex onto DNA. Cohesin generates cohesion between sister chromatids, which is critical for chromosome segregation. Scc2 (also known as NIPBL) is mutated in patients with Cornelia de Lange syndrome, a multi-organ disease characterized by developmental defects in head, limb, cognition, heart, and the gastrointestinal tract. How mutations in Scc2 lead to developmental defects in patients is yet to be elucidated. One hypothesis is that the binding of Scc2/cohesin to different regions of the genome will affect transcription. In budding yeast, Scc2 has been shown to bind to RNA Pol III transcribed genes (tRNAs, and spliceosomal), as well as RNA Pol II-transcribed genes encoding small nuclear and nucleolar RNAs (snRNAs and snoRNAs) and ribosomal protein genes. Here, we report that Scc2 is important for gene expression. Scc2 and the transcriptional regulator Paf1 collaborate to promote the production of Box H/ACA snoRNAs which guide pseudouridylation of RNAs including ribosomal RNA. Mutation of Scc2 was associated with defects in the production of ribosomal RNA, ribosome biogenesis, and splicing. While the scc2 mutant does not have a general defect in protein synthesis, it shows increased frameshifting and reduced internal ribosomal entry site (IRES) usage/cap-independent translation. These findings suggest Scc2 normally promotes a gene expression program that supports translational fidelity. We hypothesize that translational dysfunction may contribute to the human disorder Cornelia de Lange syndrome, which is caused by mutations in Scc2
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Ribosomal biogenesis"

1

Entian, Karl-Dieter, red. Ribosome Biogenesis. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2501-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

The nucleolus and ribosome biogenesis. Wien: Springer-Verlag, 1985.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Hadjiolov, Asen A. The Nucleolus and Ribosome Biogenesis. Vienna: Springer Vienna, 1985. http://dx.doi.org/10.1007/978-3-7091-8742-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Hadjiolov, A. A. Nucleolus and Ribosome Biogenesis. Springer, 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Ribosome Biogenesis: Methods and Protocols. Springer, 2022.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Hadjiolov, A. A. The Nucleolus and Ribosome Biogenesis. Springer, 2011.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Entian, Karl-Dieter. Ribosome Biogenesis: Methods and Protocols. Springer, 2022.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Londei, Paola, Anna La Teana i Sébastien Ferreira-Cerca, red. Archaeal Ribosomes: Biogenesis, Structure and Function. Frontiers Media SA, 2022. http://dx.doi.org/10.3389/978-2-88974-141-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Steinbauer, Robert. Regulation of ribosome biogenesis and RNA polymerase I transcription: How nutrients control the synthesis of ribosomes. Südwestdeutscher Verlag für Hochschulschriften, 2011.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Hadjiolov, A. A. The Nucleolus and Ribosome Biogenesis (Cell Biology Monographs). Springer, 1985.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Ribosomal biogenesis"

1

Oborská-Oplová, Michaela, Ute Fischer, Martin Altvater i Vikram Govind Panse. "Eukaryotic Ribosome assembly and Nucleocytoplasmic Transport". W Ribosome Biogenesis, 99–126. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2501-9_7.

Pełny tekst źródła
Streszczenie:
AbstractThe process of eukaryotic ribosome assembly stretches across the nucleolus, the nucleoplasm and the cytoplasm, and therefore relies on efficient nucleocytoplasmic transport. In yeast, the import machinery delivers ~140,000 ribosomal proteins every minute to the nucleus for ribosome assembly. At the same time, the export machinery facilitates translocation of ~2000 pre-ribosomal particles every minute through ~200 nuclear pore complexes (NPC) into the cytoplasm. Eukaryotic ribosome assembly also requires >200 conserved assembly factors, which transiently associate with pre-ribosomal particles. Their site(s) of action on maturing pre-ribosomes are beginning to be elucidated. In this chapter, we outline protocols that enable rapid biochemical isolation of pre-ribosomal particles for single particle cryo-electron microscopy (cryo-EM) and in vitro reconstitution of nuclear transport processes. We discuss cell-biological and genetic approaches to investigate how the ribosome assembly and the nucleocytoplasmic transport machineries collaborate to produce functional ribosomes.
Style APA, Harvard, Vancouver, ISO itp.
2

Sharma, Sunny, i Karl-Dieter Entian. "Chemical Modifications of Ribosomal RNA". W Ribosome Biogenesis, 149–66. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2501-9_9.

Pełny tekst źródła
Streszczenie:
AbstractCellular RNAs in all three kingdoms of life are modified with diverse chemical modifications. These chemical modifications expand the topological repertoire of RNAs, and fine-tune their functions. Ribosomal RNA in yeast contains more than 100 chemically modified residues in the functionally crucial and evolutionary conserved regions. The chemical modifications in the rRNA are of three types—methylation of the ribose sugars at the C2-positionAbstract (Nm), isomerization of uridines to pseudouridines (Ψ), and base modifications such as (methylation (mN), acetylation (acN), and aminocarboxypropylation (acpN)). The modifications profile of the yeast rRNA has been recently completed, providing an excellent platform to analyze the function of these modifications in RNA metabolism and in cellular physiology. Remarkably, majority of the rRNA modifications and the enzymatic machineries discovered in yeast are highly conserved in eukaryotes including humans. Mutations in factors involved in rRNA modification are linked to several rare severe human diseases (e.g., X-linked Dyskeratosis congenita, the Bowen–Conradi syndrome and the William–Beuren disease). In this chapter, we summarize all rRNA modifications and the corresponding enzymatic machineries of the budding yeast.
Style APA, Harvard, Vancouver, ISO itp.
3

Hadjiolov, Asen A. "Ribosomal Genes". W The Nucleolus and Ribosome Biogenesis, 5–53. Vienna: Springer Vienna, 1985. http://dx.doi.org/10.1007/978-3-7091-8742-5_2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Merkl, Philipp E., Christopher Schächner, Michael Pilsl, Katrin Schwank, Catharina Schmid, Gernot Längst, Philipp Milkereit, Joachim Griesenbeck i Herbert Tschochner. "Specialization of RNA Polymerase I in Comparison to Other Nuclear RNA Polymerases of Saccharomyces cerevisiae". W Ribosome Biogenesis, 63–70. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2501-9_4.

Pełny tekst źródła
Streszczenie:
AbstractIn archaea and bacteria the major classes of RNAs are synthesized by one DNA-dependent RNA polymerase (RNAP). In contrast, most eukaryotes have three highly specialized RNAPs to transcribe the nuclear genome. RNAP I synthesizes almost exclusively ribosomal (r)RNA, RNAP II synthesizes mRNA as well as many noncoding RNAs involved in RNA processing or RNA silencing pathways and RNAP III synthesizes mainly tRNA and 5S rRNA. This review discusses functional differences of the three nuclear core RNAPs in the yeast S. cerevisiae with a particular focus on RNAP I transcription of nucleolar ribosomal (r)DNA chromatin.
Style APA, Harvard, Vancouver, ISO itp.
5

Schächner, Christopher, Philipp E. Merkl, Michael Pilsl, Katrin Schwank, Kristin Hergert, Sebastian Kruse, Philipp Milkereit, Herbert Tschochner i Joachim Griesenbeck. "Establishment and Maintenance of Open Ribosomal RNA Gene Chromatin States in Eukaryotes". W Ribosome Biogenesis, 25–38. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2501-9_2.

Pełny tekst źródła
Streszczenie:
AbstractIn growing eukaryotic cells, nuclear ribosomal (r)RNA synthesis by RNA polymerase (RNAP) I accounts for the vast majority of cellular transcription. This high output is achieved by the presence of multiple copies of rRNA genes in eukaryotic genomes transcribed at a high rate. In contrast to most of the other transcribed genomic loci, actively transcribed rRNA genes are largely devoid of nucleosomes adapting a characteristic “open” chromatin state, whereas a significant fraction of rRNA genes resides in a transcriptionally inactive nucleosomal “closed” chromatin state. Here, we review our current knowledge about the nature of open rRNA gene chromatin and discuss how this state may be established.
Style APA, Harvard, Vancouver, ISO itp.
6

Merkl, Philipp E., Christopher Schächner, Michael Pilsl, Katrin Schwank, Kristin Hergert, Gernot Längst, Philipp Milkereit, Joachim Griesenbeck i Herbert Tschochner. "Analysis of Yeast RNAP I Transcription of Nucleosomal Templates In Vitro". W Ribosome Biogenesis, 39–59. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2501-9_3.

Pełny tekst źródła
Streszczenie:
AbstractNuclear eukaryotic RNA polymerases (RNAPs) transcribe a chromatin template in vivo. Since the basic unit of chromatin, the nucleosome, renders the DNA largely inaccessible, RNAPs have to overcome the nucleosomal barrier for efficient RNA synthesis. Gaining mechanistical insights in the transcription of chromatin templates will be essential to understand the complex process of eukaryotic gene expression. In this article we describe the use of defined in vitro transcription systems for comparative analysis of highly purified RNAPs I–III from S. cerevisiae (hereafter called yeast) transcribing in vitro reconstituted nucleosomal templates. We also provide a protocol to study promoter-dependent RNAP I transcription of purified native 35S ribosomal RNA (rRNA) gene chromatin.
Style APA, Harvard, Vancouver, ISO itp.
7

Yang, Jun, Peter Watzinger i Sunny Sharma. "Mapping of the Chemical Modifications of rRNAs". W Ribosome Biogenesis, 181–97. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2501-9_11.

Pełny tekst źródła
Streszczenie:
AbstractCellular RNAs, both coding and noncoding, contain several chemical modifications. Both ribose sugars and nitrogenous bases are targeted for these chemical additions. These modifications are believed to expand the topological potential of RNA molecules by bringing chemical diversity to otherwise limited repertoire. Here, using ribosomal RNA of yeast as an example, a detailed protocol for systematically mapping various chemical modifications to a single nucleotide resolution by a combination of Mung bean nuclease protection assay and RP-HPLC is provided. Molar levels are also calculated for each modification using their UV (254 nm) molar response factors that can be used for determining the amount of modifications at different residues in other RNA molecules. The chemical nature, their precise location and quantification of modifications will facilitate understanding the precise role of these chemical modifications in cellular physiology.
Style APA, Harvard, Vancouver, ISO itp.
8

Pilsl, Michael, Florian B. Heiss, Gisela Pöll, Mona Höcherl, Philipp Milkereit i Christoph Engel. "Preparation of RNA Polymerase Complexes for Their Analysis by Single-Particle Cryo-Electron Microscopy". W Ribosome Biogenesis, 81–96. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2501-9_6.

Pełny tekst źródła
Streszczenie:
AbstractRecent technological progress revealed new prospects of high-resolution structure determination of macromolecular complexes using cryo-electron microscopy (cryo-EM). In the field of RNA polymerase (Pol) I research, a number of cryo-EM studies contributed to understanding the highly specialized mechanisms underlying the transcription of ribosomal RNA genes. Despite a broad applicability of the cryo-EM method itself, preparation of samples for high-resolution data collection can be challenging. Here, we describe strategies for the purification and stabilization of Pol I complexes, exemplarily considering advantages and disadvantages of the methodology. We further provide an easy-to-implement protocol for the coating of EM-grids with self-made carbon support films. In sum, we present an efficient workflow for cryo-grid preparation and optimization, including early stage cryo-EM screening that can be adapted to a wide range of soluble samples for high-resolution structure determination.
Style APA, Harvard, Vancouver, ISO itp.
9

Hadjiolov, Asen A. "Transcription of Ribosomal Genes". W The Nucleolus and Ribosome Biogenesis, 54–86. Vienna: Springer Vienna, 1985. http://dx.doi.org/10.1007/978-3-7091-8742-5_3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Roy-Chaudhuri, Biswajoy, Narayanaswamy Kirthi, Teresa Kelley i Gloria M. Culver. "Ribosomal protein S5, ribosome biogenesis and translational fidelity". W Ribosomes, 263–70. Vienna: Springer Vienna, 2011. http://dx.doi.org/10.1007/978-3-7091-0215-2_21.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Ribosomal biogenesis"

1

Sun, Xiao-Xin, i Mushui Dai. "Abstract 1104: Perturbation of 60S ribosomal biogenesis results in ribosomal protein L5 and L11-dependent p53 activation". W Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-1104.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Menoyo, Sandra, Antonio Gentilella i George Thomas. "Abstract B05: Characterization of the pre-ribosomal complex, which mediates the p53 Impaired Ribosome Biogenesis Checkpoint (IRBC)". W Abstracts: AACR Special Conference on Translational Control of Cancer: A New Frontier in Cancer Biology and Therapy; October 27-30, 2016; San Francisco, CA. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.transcontrol16-b05.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Lessard, Frédéric, Véronique Bourdeau, Xavier Deschênes-Simard, Sebastian Igelmann, Marinieve Montero i Gerardo Ferbeyre. "Abstract 2246: Senescence as a result of impaired ribosome biogenesis". W Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-2246.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Shakirov, Yevgeniy. "Ribosome biogenesis pathway underlies establishment of telomere length set point in Arabidopsis". W ASPB PLANT BIOLOGY 2020. USA: ASPB, 2020. http://dx.doi.org/10.46678/pb.20.1375852.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Dong, Zhixiong, Changjun Zhu i Wei Jiang. "Abstract 835: hRrp15, a ribosome RNA processing protein, has profound function on nucleoli construction, ribosome biogenesis and cell proliferation." W Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-835.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Sheppard, Karen E., Natalie Brajanovski, Katherine M. Hannan, Jessica Ahearn, Jason Ellul, Denis Drygin, Sean O'Brien, Grant McArthur, Ross D. Hannan i Richard B. Pearson. "Abstract 2718: Targeting ribosome biogenesis with CX5461 as a potential treatment for melanoma and ovarian cancer". W Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-2718.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Penzo, Marianna, Lucia Casoli, Laura Sicuro, Alice Galibiati, Daniela Pollutri, Marzia Govoni, Claudio Ceccarelli i in. "Abstract 5145: KDM2B expression regulates ribosome biogenesis and cancer cell growth in a p53-dependent manner". W Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-5145.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Pearson, Richard B., Jennifer R. Devlin, Katherine M. Hannan, Nadine Hein, Megan J. Bywater, Gretchen Poortinga, Donald Cameron i in. "Abstract 2735: Multi-point targeting of the synthetic lethal interactions between Myc, ribosome biogenesis and ribosome function cooperates to treat B-cell lymphoma". W Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-2735.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Lessard, Frédéric, Véronique Bourdeau, Sebastian Igelmann, Xavier Deschênes-Simard, Marinieve Montero i Gerardo Ferbeyre. "Abstract 1270: Ribosome biogenesis is reduced by oncogenic stress in normal cells and is sufficient to trigger cellular senescence". W Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-1270.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Devlin, Jennifer R., Richard J. Rebello, Katherine M. Hannan, Carleen Cullinane, Denis Drygin, Gail P. Risbridger, Luc Furic, Ross D. Hannan i Richard B. Pearson. "Abstract 4809: Combination therapy targeting ribosome biogenesis and mRNA translation provides a novel and potent therapeutic approach to treat MYC-driven malignancy". W Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-4809.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii