Artykuły w czasopismach na temat „RGG-motif Protein”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 44 najlepszych artykułów w czasopismach naukowych na temat „RGG-motif Protein”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Bhatter, Nupur, Rajan Iyyappan i Purusharth I. Rajyaguru. "Characterizing mutations in and genetic interactions of RGG-motif translation repressor Sbp1". Wellcome Open Research 3 (22.08.2018): 102. http://dx.doi.org/10.12688/wellcomeopenres.14709.1.
Pełny tekst źródłaCorley, Susan M., i Jill E. Gready. "Identification of the RGG Box Motif in Shadoo: RNA-Binding and Signaling Roles?" Bioinformatics and Biology Insights 2 (styczeń 2008): BBI.S1075. http://dx.doi.org/10.4137/bbi.s1075.
Pełny tekst źródłaYun, Chi Y., i Xiang-Dong Fu. "Conserved Sr Protein Kinase Functions in Nuclear Import and Its Action Is Counteracted by Arginine Methylation in Saccharomyces cerevisiae". Journal of Cell Biology 150, nr 4 (21.08.2000): 707–18. http://dx.doi.org/10.1083/jcb.150.4.707.
Pełny tekst źródłaVasilyev, Nikita, Anna Polonskaia, Jennifer C. Darnell, Robert B. Darnell, Dinshaw J. Patel i Alexander Serganov. "Crystal structure reveals specific recognition of a G-quadruplex RNA by a β-turn in the RGG motif of FMRP". Proceedings of the National Academy of Sciences 112, nr 39 (15.09.2015): E5391—E5400. http://dx.doi.org/10.1073/pnas.1515737112.
Pełny tekst źródłaBhatter, Nupur, Rajan Iyyappan, Gayatri Mohanan i Purusharth I. Rajyaguru. "Exploring the role of RRM domains and conserved aromatic residues in RGG motif of eIF4G-binding translation repressor protein Sbp1". Wellcome Open Research 3 (17.09.2021): 102. http://dx.doi.org/10.12688/wellcomeopenres.14709.3.
Pełny tekst źródłaWang, Yi-Chun, Shang-Hsuan Huang, Chien-Ping Chang i Chuan Li. "Identification and Characterization of Glycine- and Arginine-Rich Motifs in Proteins by a Novel GAR Motif Finder Program". Genes 14, nr 2 (27.01.2023): 330. http://dx.doi.org/10.3390/genes14020330.
Pełny tekst źródłaKrüger, Timothy, Mario Hofweber i Susanne Kramer. "SCD6 induces ribonucleoprotein granule formation in trypanosomes in a translation-independent manner, regulated by its Lsm and RGG domains". Molecular Biology of the Cell 24, nr 13 (lipiec 2013): 2098–111. http://dx.doi.org/10.1091/mbc.e13-01-0068.
Pełny tekst źródłaBhatter, Nupur, Rajan Iyyappan i Purusharth I. Rajyaguru. "Exploring the role of RRM domains and conserved aromatic residues in RGG motif of eIF4G-binding translation repressor protein Sbp1". Wellcome Open Research 3 (6.02.2020): 102. http://dx.doi.org/10.12688/wellcomeopenres.14709.2.
Pełny tekst źródłaKoukiali, Anastasia, Makrina Daniilidou, Ilias Mylonis, Thomas Giannakouros i Eleni Nikolakaki. "SR Protein Kinase 1 Inhibition by TAF15". Cells 12, nr 1 (28.12.2022): 126. http://dx.doi.org/10.3390/cells12010126.
Pełny tekst źródłaPoornima, Gopalakrishna, Ravishankar Mythili, Priyabrata Nag, Sabnam Parbin, Praveen Kumar Verma, Tanweer Hussain i Purusharth I. Rajyaguru. "RGG-motif self-association regulates eIF4G-binding translation repressor protein Scd6". RNA Biology 16, nr 9 (12.06.2019): 1215–27. http://dx.doi.org/10.1080/15476286.2019.1621623.
Pełny tekst źródłaCorbin-Lickfett, Kara A., Stuart K. Souki, Melanie J. Cocco i Rozanne M. Sandri-Goldin. "Three Arginine Residues within the RGG Box Are Crucial for ICP27 Binding to Herpes Simplex Virus 1 GC-Rich Sequences and for Efficient Viral RNA Export". Journal of Virology 84, nr 13 (21.04.2010): 6367–76. http://dx.doi.org/10.1128/jvi.00509-10.
Pełny tekst źródłaRuiz-Jarabo, Carmen M., Noemí Sevilla, Mercedes Dávila, Gema Gómez-Mariano, Eric Baranowski i Esteban Domingo. "Antigenic properties and population stability of a foot-and-mouth disease virus with an altered Arg-Gly-Asp receptor-recognition motif". Journal of General Virology 80, nr 8 (1.08.1999): 1899–909. http://dx.doi.org/10.1099/0022-1317-80-8-1899.
Pełny tekst źródłaBoulila, Younes, Stanislas Tomavo i Mathieu Gissot. "A RGG motif protein is involved in Toxoplasma gondii stress-mediated response". Molecular and Biochemical Parasitology 196, nr 1 (sierpień 2014): 1–8. http://dx.doi.org/10.1016/j.molbiopara.2014.07.009.
Pełny tekst źródłaSiomi, H., i G. Dreyfuss. "A nuclear localization domain in the hnRNP A1 protein." Journal of Cell Biology 129, nr 3 (1.05.1995): 551–60. http://dx.doi.org/10.1083/jcb.129.3.551.
Pełny tekst źródłaYin, Ziwei, Maki Kobayashi, Wenjun Hu, Koichi Higashi, Nasim A. Begum, Ken Kurokawa i Tasuku Honjo. "RNA-binding motifs of hnRNP K are critical for induction of antibody diversification by activation-induced cytidine deaminase". Proceedings of the National Academy of Sciences 117, nr 21 (8.05.2020): 11624–35. http://dx.doi.org/10.1073/pnas.1921115117.
Pełny tekst źródłaHuang, Zhou-Li, Jing Dai, Wen-Hua Luo, Xiang-Gui Wang, Jia-Heng Tan, Shuo-Bin Chen i Zhi-Shu Huang. "Identification of G-Quadruplex-Binding Protein from the Exploration of RGG Motif/G-Quadruplex Interactions". Journal of the American Chemical Society 140, nr 51 (5.12.2018): 17945–55. http://dx.doi.org/10.1021/jacs.8b09329.
Pełny tekst źródłaVolná, Adriana, Martin Bartas, Jakub Nezval, Vladimír Špunda, Petr Pečinka i Jiří Červeň. "Searching for G-Quadruplex-Binding Proteins in Plants: New Insight into Possible G-Quadruplex Regulation". BioTech 10, nr 4 (22.09.2021): 20. http://dx.doi.org/10.3390/biotech10040020.
Pełny tekst źródłaAnderson, J. T., S. M. Wilson, K. V. Datar i M. S. Swanson. "NAB2: a yeast nuclear polyadenylated RNA-binding protein essential for cell viability". Molecular and Cellular Biology 13, nr 5 (maj 1993): 2730–41. http://dx.doi.org/10.1128/mcb.13.5.2730-2741.1993.
Pełny tekst źródłaAnderson, J. T., S. M. Wilson, K. V. Datar i M. S. Swanson. "NAB2: a yeast nuclear polyadenylated RNA-binding protein essential for cell viability." Molecular and Cellular Biology 13, nr 5 (maj 1993): 2730–41. http://dx.doi.org/10.1128/mcb.13.5.2730.
Pełny tekst źródłaIacovides, Demetris C., Clodagh C. O'Shea, Juan Oses-Prieto, Alma Burlingame i Frank McCormick. "Critical Role for Arginine Methylation in Adenovirus-Infected Cells". Journal of Virology 81, nr 23 (8.08.2007): 13209–17. http://dx.doi.org/10.1128/jvi.01415-06.
Pełny tekst źródłaLiu, Q., i G. Dreyfuss. "In vivo and in vitro arginine methylation of RNA-binding proteins." Molecular and Cellular Biology 15, nr 5 (maj 1995): 2800–2808. http://dx.doi.org/10.1128/mcb.15.5.2800.
Pełny tekst źródłaSolomon, Samuel, Yaoxian Xu, Bin Wang, Muriel D. David, Peter Schubert, Derek Kennedy i John W. Schrader. "Distinct Structural Features ofCaprin-1 Mediate Its Interaction with G3BP-1 and Its Induction of Phosphorylation of Eukaryotic Translation InitiationFactor 2α, Entry to Cytoplasmic Stress Granules, and Selective Interaction with a Subset of mRNAs". Molecular and Cellular Biology 27, nr 6 (8.01.2007): 2324–42. http://dx.doi.org/10.1128/mcb.02300-06.
Pełny tekst źródłaFreischmidt, Axel, Anand Goswami, Katharina Limm, Vitaly L. Zimyanin, Maria Demestre, Hannes Glaß, Karlheinz Holzmann i in. "A serum microRNA sequence reveals fragile X protein pathology in amyotrophic lateral sclerosis". Brain 144, nr 4 (1.04.2021): 1214–29. http://dx.doi.org/10.1093/brain/awab018.
Pełny tekst źródłaYan, Qiuxia, Peng Zeng, Xiuqin Zhou, Xiaoying Zhao, Runqiang Chen, Jing Qiao, Ling Feng, Zhenjie Zhu, Guozhi Zhang i Cairong Chen. "RBMX suppresses tumorigenicity and progression of bladder cancer by interacting with the hnRNP A1 protein to regulate PKM alternative splicing". Oncogene 40, nr 15 (9.02.2021): 2635–50. http://dx.doi.org/10.1038/s41388-021-01666-z.
Pełny tekst źródłaLorković, Z. J., R. G. Herrmann i R. Oelmüller. "PRH75, a new nucleus-localized member of the DEAD-box protein family from higher plants." Molecular and Cellular Biology 17, nr 4 (kwiecień 1997): 2257–65. http://dx.doi.org/10.1128/mcb.17.4.2257.
Pełny tekst źródłaMears, W. E., i S. A. Rice. "The RGG box motif of the herpes simplex virus ICP27 protein mediates an RNA-binding activity and determines in vivo methylation." Journal of virology 70, nr 11 (1996): 7445–53. http://dx.doi.org/10.1128/jvi.70.11.7445-7453.1996.
Pełny tekst źródłaNakamoto, Meagan Y., Nickolaus C. Lammer, Robert T. Batey i Deborah S. Wuttke. "hnRNPK recognition of the B motif of Xist and other biological RNAs". Nucleic Acids Research 48, nr 16 (19.08.2020): 9320–35. http://dx.doi.org/10.1093/nar/gkaa677.
Pełny tekst źródłaZinszner, H., J. Sok, D. Immanuel, Y. Yin i D. Ron. "TLS (FUS) binds RNA in vivo and engages in nucleo-cytoplasmic shuttling". Journal of Cell Science 110, nr 15 (1.08.1997): 1741–50. http://dx.doi.org/10.1242/jcs.110.15.1741.
Pełny tekst źródłaJenning, Madeleine, Bianka Marklein, Jimmy Ytterberg, Roman A. Zubarev, Vijay Joshua, Dirkjan van Schaardenburg, Lotte van de Stadt i in. "Bacterial citrullinated epitopes generated by Porphyromonas gingivalis infection—a missing link for ACPA production". Annals of the Rheumatic Diseases 79, nr 9 (12.06.2020): 1194–202. http://dx.doi.org/10.1136/annrheumdis-2019-216919.
Pełny tekst źródłaSoliman, Tarik M., i Saul J. Silverstein. "Identification of an Export Control Sequence and a Requirement for the KH Domains in ICP27 from Herpes Simplex Virus Type 1". Journal of Virology 74, nr 16 (15.08.2000): 7600–7609. http://dx.doi.org/10.1128/jvi.74.16.7600-7609.2000.
Pełny tekst źródłaRajyaguru, Purusharth, i Roy Parker. "RGG motif proteins: Modulators of mRNA functional states". Cell Cycle 11, nr 14 (15.01.2012): 2594–99. http://dx.doi.org/10.4161/cc.20716.
Pełny tekst źródłaChaussee, Michael S., Gail L. Sylva, Daniel E. Sturdevant, Laura M. Smoot, Morag R. Graham, Robert O. Watson i James M. Musser. "Rgg Influences the Expression of Multiple Regulatory Loci To Coregulate Virulence Factor Expression in Streptococcus pyogenes". Infection and Immunity 70, nr 2 (luty 2002): 762–70. http://dx.doi.org/10.1128/iai.70.2.762-770.2002.
Pełny tekst źródłaRajyaguru, Purusharth, Meipei She i Roy Parker. "Scd6 Targets eIF4G to Repress Translation: RGG Motif Proteins as a Class of eIF4G-Binding Proteins". Molecular Cell 45, nr 2 (styczeń 2012): 244–54. http://dx.doi.org/10.1016/j.molcel.2011.11.026.
Pełny tekst źródłaDammer, Eric B., Claudia Fallini, Yair M. Gozal, Duc M. Duong, Wilfried Rossoll, Ping Xu, James J. Lah i in. "Coaggregation of RNA-Binding Proteins in a Model of TDP-43 Proteinopathy with Selective RGG Motif Methylation and a Role for RRM1 Ubiquitination". PLoS ONE 7, nr 6 (21.06.2012): e38658. http://dx.doi.org/10.1371/journal.pone.0038658.
Pełny tekst źródłaRoy, Raju, Gitartha Das, Ishwarya Achappa Kuttanda, Nupur Bhatter i Purusharth I. Rajyaguru. "Low complexity RGG-motif sequence is required for Processing body (P-body) disassembly". Nature Communications 13, nr 1 (19.04.2022). http://dx.doi.org/10.1038/s41467-022-29715-5.
Pełny tekst źródłaTunnicliffe, Richard B., William K. Hu, Michele Y. Wu, Colin Levy, A. Paul Mould, Edward A. McKenzie, Rozanne M. Sandri-Goldin i Alexander P. Golovanov. "Molecular Mechanism of SR Protein Kinase 1 Inhibition by the Herpes Virus Protein ICP27". mBio 10, nr 5 (22.10.2019). http://dx.doi.org/10.1128/mbio.02551-19.
Pełny tekst źródłaBonucci, A., M. G. Murrali, L. Banci i R. Pierattelli. "A combined NMR and EPR investigation on the effect of the disordered RGG regions in the structure and the activity of the RRM domain of FUS". Scientific Reports 10, nr 1 (grudzień 2020). http://dx.doi.org/10.1038/s41598-020-77899-x.
Pełny tekst źródłade Vries, Tebbe, William Martelly, Sébastien Campagne, Kevin Sabath, Chris P. Sarnowski, Jason Wong, Alexander Leitner, Stefanie Jonas, Shalini Sharma i Frédéric H. T. Allain. "Sequence-specific RNA recognition by an RGG motif connects U1 and U2 snRNP for spliceosome assembly". Proceedings of the National Academy of Sciences 119, nr 6 (31.01.2022). http://dx.doi.org/10.1073/pnas.2114092119.
Pełny tekst źródłaJohansson, Josefin, Sarah Lidéus, Carina Frykholm, Cecilia Gunnarsson, Filip Mihalic, Sanna Gudmundsson, Sara Ekvall i in. "Gustavson syndrome is caused by an in-frame deletion in RBMX associated with potentially disturbed SH3 domain interactions". European Journal of Human Genetics, 5.06.2023. http://dx.doi.org/10.1038/s41431-023-01392-y.
Pełny tekst źródłaVishal, Sonali S., Denethi Wijegunawardana, Muthu Raj Salaikumaran i Pallavi P. Gopal. "Sequence Determinants of TDP-43 Ribonucleoprotein Condensate Formation and Axonal Transport in Neurons". Frontiers in Cell and Developmental Biology 10 (12.05.2022). http://dx.doi.org/10.3389/fcell.2022.876893.
Pełny tekst źródłaWu, Shan, Boon Heng Dennis Teo, Seng Yin Kelly Wee, Junjie Chen i Jinhua Lu. "The GAR/RGG motif defines a family of nuclear alarmins". Cell Death & Disease 12, nr 5 (maj 2021). http://dx.doi.org/10.1038/s41419-021-03766-w.
Pełny tekst źródłaGarg, Mani, Debadrita Roy i Purusharth I. Rajyaguru. "Low complexity RGG-motif containing proteins Scd6 and Psp2 act as suppressors of clathrin heavy chain deficiency". Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, lipiec 2022, 119327. http://dx.doi.org/10.1016/j.bbamcr.2022.119327.
Pełny tekst źródłaKedersha, Nancy, Marc D. Panas, Christopher A. Achorn, Shawn Lyons, Sarah Tisdale, Tyler Hickman, Marshall Thomas i in. "G3BP–Caprin1–USP10 complexes mediate stress granule condensation and associate with 40S subunits". Journal of Cell Biology 212, nr 7 (28.03.2016). http://dx.doi.org/10.1083/jcb.201508028.
Pełny tekst źródłaThandapani, Palaniraja, Jingwen Song, Valentina Gandin, Yutian Cai, Samuel G. Rouleau, Jean-Michel Garant, Francois-Michel Boisvert i in. "Aven recognition of RNA G-quadruplexes regulates translation of the mixed lineage leukemia protooncogenes". eLife 4 (12.08.2015). http://dx.doi.org/10.7554/elife.06234.
Pełny tekst źródła