Gotowa bibliografia na temat „RGD nanomaterials”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „RGD nanomaterials”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "RGD nanomaterials"
Zhao, C. H., X. P. Zhang i L. Zhang. "RGD peptide functionalized graphene oxide: a bioactive surface for cell-material interactions". Digest Journal of Nanomaterials and Biostructures 17, nr 3 (25.09.2022): 989–97. http://dx.doi.org/10.15251/djnb.2022.173.989.
Pełny tekst źródłaQu, Xiaochao, Xiaoxiao Li, Jingning Liang, Yanran Wang, Muhan Liu i Jimin Liang. "Micro-CT Imaging of RGD-Conjugated Gold Nanorods Targeting TumorIn Vivo". Journal of Nanomaterials 2016 (2016): 1–13. http://dx.doi.org/10.1155/2016/8368154.
Pełny tekst źródłaLi, Jianxia, Leilei Zheng, Lin Zeng, Yan Zhang, Lin Jiang i Jinlin Song. "RGD Peptide-Grafted Graphene Oxide as a New Biomimetic Nanointerface for Impedance-Monitoring Cell Behaviors". Journal of Nanomaterials 2016 (2016): 1–12. http://dx.doi.org/10.1155/2016/2828512.
Pełny tekst źródłaZhang, Ru, Shang Luo, Lin-Kun Hao, Yun-Ying Jiang, Ying Gao, Ning-Ning Zhang, Xue-Cheng Zhang i Yi-Min Song. "Preparation and Properties of Thrombus-Targeted Urokinase/Multi-Walled Carbon Nanotubes (MWCNTs)-Chitosan (CS)-RGD Drug Delivery System". Journal of Biomedical Nanotechnology 17, nr 9 (1.09.2021): 1711–25. http://dx.doi.org/10.1166/jbn.2021.3113.
Pełny tekst źródłaWu, Xiaoxia, Yan Peng, Xiaomei Duan, Lingyan Yang, Jinze Lan i Fu Wang. "Homologous Gold Nanoparticles and Nanoclusters Composites with Enhanced Surface Raman Scattering and Metal Fluorescence for Cancer Imaging". Nanomaterials 8, nr 10 (11.10.2018): 819. http://dx.doi.org/10.3390/nano8100819.
Pełny tekst źródłaYin, Bohan, Hongrong Yang i Mo Yang. "Integrating Soft Hydrogel with Nanostructures Reinforces Stem Cell Adhesion and Differentiation". Journal of Composites Science 6, nr 1 (6.01.2022): 19. http://dx.doi.org/10.3390/jcs6010019.
Pełny tekst źródłaAfami, Marina E., Ikhlas El Karim, Imad About, Anna D. Krasnodembskaya, Garry Laverty i Fionnuala T. Lundy. "Multicomponent Peptide Hydrogels as an Innovative Platform for Cell-Based Tissue Engineering in the Dental Pulp". Pharmaceutics 13, nr 10 (28.09.2021): 1575. http://dx.doi.org/10.3390/pharmaceutics13101575.
Pełny tekst źródłaCamacho, Ángela, Álvaro Duarte, Darwin Dubay, Enrique Forero, Edgar González, Franklin Jaramillo, Carlos Maldonado i in. "Definición de nanomateriales para Colombia". Revista Colombiana de Química 45, nr 1 (11.08.2016): 15. http://dx.doi.org/10.15446/rev.colomb.quim.v45n1.58955.
Pełny tekst źródłaYedgar, Saul, Gregory Barshtein i Alexander Gural. "Hemolytic Activity of Nanoparticles as a Marker of Their Hemocompatibility". Micromachines 13, nr 12 (27.11.2022): 2091. http://dx.doi.org/10.3390/mi13122091.
Pełny tekst źródłaAkpe, Victor, Tak H. Kim, Christopher L. Brown i Ian E. Cock. "Circulating tumour cells: a broad perspective". Journal of The Royal Society Interface 17, nr 168 (lipiec 2020): 20200065. http://dx.doi.org/10.1098/rsif.2020.0065.
Pełny tekst źródłaRozprawy doktorskie na temat "RGD nanomaterials"
Zhu, Lin. "Biocompatibility of Carbon Nanomaterials: Materials Characterization and Cytotoxicity Evaluation". University of Dayton / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1343744183.
Pełny tekst źródłaJi, Yu. "Characterisation of red blood cell Phagocytosis and assessment of nanoparticle uptake by Monocytic cells". Thesis, Queensland University of Technology, 2021. https://eprints.qut.edu.au/208148/1/Yu_Ji_Thesis.pdf.
Pełny tekst źródłaStevenson, Amadeus. "Interactions of nanoparticles with cells for nanomedical applications". Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:ecde4b01-e2ec-42f4-9353-72071b845775.
Pełny tekst źródłaXuedan, He. "RGD-Modified dendrimers for drug encapsulation and targeted inhibition of tumor cells". Master's thesis, 2014. http://hdl.handle.net/10400.13/1532.
Pełny tekst źródłaNeste trabalho, foram preparados dendrímeros de poli(amidoamina) (PAMAM) de geração 5 (G5) funcionalizados com o péptido cíclico RGD para o encapsulamento do fármaco anticancerígeno doxorubicina (DOX) e sua entrega em células cancerígenas que expressem elevadas quantidades de integrinas αvβ3 na sua superfície (entrega específica do fármaco em células-alvo). No processo de síntese, o péptido contendo um grupo tiol foi primeiro ligado a uma cadeia de polietilenoglicol (PEG) através de um reagente de reticulação bi-funcional. De seguida, os dendrímeros foram ligados covalentemente ao péptido PEGilado e, ainda, ao isotiocianato de fluoresceína (FI), seguindo-se a acetilação (Ac) das aminas terminais remanescentes no dendrímero para se obter o sistema final G5.NHAc-FI-PEG-RGD. Os resultados experimentais mostram que, aproximadamente, existem 6 moléculas de DOX encapsuladas por G5.NHAc-FI-PEG-RGD, sendo estes complexos solúveis e estáveis em água. Os estudos in vitro mostraram que a libertação do fármaco a partir dos dendrímeros multifuncionalizados é controlada. O trabalho envolveu, ainda, estudos de NMR mono- e bi-dimensional na investigação da interacção existente entre os dendrímeros e as moléculas de DOX, e ainda a avaliação do impacto do pH ambiental na velocidade de libertação da DOX. Realizaram-se, igualmente, estudos biológicos com células U87-MG, os quais mostraram que os sistemas G5.NHAc-FI-PEG-RGD não apresentavam toxicidade e que, quando complexados com a DOX, apresentavam uma citotoxicidade semelhante à do fármaco usado de forma isolada. Dada a afinidade do péptido RGD para as integrinas presentes em grande quantidade à superfície das células U87-MG, o sistema G5.NHAc-FI-PEG-RGD mostrou-se muito eficaz na entrega específica do fármaco e consequente eficácia terapêutica. A entrega do fármaco nas células mostrou ser, numa importante extensão, mediada pelos receptores (integrinas αvβ3) presentes à sua superfície. Este trabalho mostrou que os dendrímeros multifuncionalizados G5.NHAc-FI-PEG-RGD são RESUMO vi bastante promissores como sistemas para a entrega específica de fármacos em células cancerígenas.
Asampille, Gitanjali. "Study of a Self-assembling Polypeptide Nanotube: Structure, Dynamics and Applications in Cancer and Tissue engineering". Thesis, 2018. https://etd.iisc.ac.in/handle/2005/5385.
Pełny tekst źródłaKundu, Subhajit. "Mechanistic Understanding of Growth and Directed Assembly of Nanomaterials". Thesis, 2015. http://etd.iisc.ac.in/handle/2005/3686.
Pełny tekst źródłaKundu, Subhajit. "Mechanistic Understanding of Growth and Directed Assembly of Nanomaterials". Thesis, 2015. http://etd.iisc.ernet.in/2005/3686.
Pełny tekst źródłaTomaszewski, Mariusz. "Wspomaganie procesu anammox w niskich temperaturach zredukowanym tlenkiem grafenu". Rozprawa doktorska, 2019. https://repolis.bg.polsl.pl/dlibra/docmetadata?showContent=true&id=58662.
Pełny tekst źródłaTomaszewski, Mariusz. "Wspomaganie procesu anammox w niskich temperaturach zredukowanym tlenkiem grafenu". Rozprawa doktorska, 2019. https://delibra.bg.polsl.pl/dlibra/docmetadata?showContent=true&id=58662.
Pełny tekst źródłaCzęści książek na temat "RGD nanomaterials"
Zhang, Yunjiao. "RGD-RE-1 Bifunctional Short Peptide Enhances the Interaction Between Rare Earth Nanomaterials and Cancer Cells and the Effect of Cell Autophagy". W Springer Theses, 143–52. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8166-0_6.
Pełny tekst źródłaLiu, Yihang, Dingzhou Cui, Mingrui Chen, Zhen Li i Chongwu Zhou. "Synthesis of Red and Black Phosphorus Nanomaterials". W ACS Symposium Series, 1–25. Washington, DC: American Chemical Society, 2019. http://dx.doi.org/10.1021/bk-2019-1333.ch001.
Pełny tekst źródłaBondavalli, Paolo. "New Generation of NVMs Based on Graphene-related Nanomaterials". W Rad-hard Semiconductor Memories, 341–67. New York: River Publishers, 2022. http://dx.doi.org/10.1201/9781003339182-9.
Pełny tekst źródłaKharlamov, A., G. Kharlamova, O. Khyzhun i N. Kirillova. "New Substances: Red Carbon Suboxide, Red N-doped Fullerene (C50N10)O3H10 and Red Carbon". W Carbon Nanomaterials in Clean Energy Hydrogen Systems - II, 287–98. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0899-0_24.
Pełny tekst źródłaSrivyas, Pranav Dev, M. S. Charoo, Soundhar Arumugam i Tanmoy Medhi. "Tribological performance of RGO and Al2O3 nanodispersions in synthetic lubricant". W Nanomaterials for Sustainable Tribology, 65–74. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003306276-4.
Pełny tekst źródłaHo, Cheuk-Lam, i Wai-Yeung Wong. "Recent Progress of Iridium(III) Red Phosphors for Phosphorescent Organic Light-Emitting Diodes". W Nanomaterials, Polymers, and Devices, 195–214. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781118867204.ch7.
Pełny tekst źródłaKamble, Vinayak, Soumya Biswas, V. R. Appu i Arun Kumar. "Reduced Graphene Oxide Photodetector Devices for Infra-Red Sensing". W Carbon Nanomaterial Electronics: Devices and Applications, 349–69. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1052-3_14.
Pełny tekst źródłaBhangare, Bhagyashri, Niranjan S. Ramgir, K. R. Sinju, A. Pathak, S. Jagtap, A. K. Debnath, K. P. Muthe i S. W. Gosavi. "Reduced Graphene Oxide (rGO)-Based Nanohybrids as Gas Sensors: State of the Art". W Materials Horizons: From Nature to Nanomaterials, 189–217. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4810-9_8.
Pełny tekst źródłaGoel, Shreya, Feng Chen i Weibo Cai. "Red Blood Cell-Mimicking Hybrid Nanoparticles". W Hybrid Nanomaterials, 7–35. CRC Press, 2017. http://dx.doi.org/10.1201/9781315370934-2.
Pełny tekst źródłaVaishnav, Vikash Kumar, Khageshwar Prasad, Rashmi Yadav, Amitabh Aharwar i Bhupendra Nath Tiwary. "Graphene-Based Nanomaterials and Their Sensing Application". W Recent Advances in Biosensor Technology, 45–77. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815123739123010006.
Pełny tekst źródłaStreszczenia konferencji na temat "RGD nanomaterials"
Martí-Centelles, Vicente, Andrea Bernardos Bau, Maria Dolores Marcos Martínez, Susana Querol Magdalena i Joana Oliver Talens. "Prácticas de Materiales y Nanomateriales para Estudiantes de Primer Curso de Ingeniería Física". W IN-RED 2022: VIII Congreso de Innovación Educativa y Docencia en Red. València: Editorial Universitat Politècnica de València, 2022. http://dx.doi.org/10.4995/inred2022.2022.15908.
Pełny tekst źródłaIchkitidze, L. P., D. V. Telishev, N. A. Demidenko, E. P. Kitsyuk i V. V. Zar. "The study of the electrical conductivity of layers of biological composite nanomaterials". W XIV RUSSIAN-GERMANY CONFERENCE ON BIOMEDICAL ENGINEERING (RGC-2019). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5121954.
Pełny tekst źródłaRosticher, C., C. Chanéac, B. Viana, M. A. Fortin, J. Lagueux i L. Faucher. "Red persistent luminescence and magnetic properties of nanomaterials for multimodal imaging". W SPIE OPTO, redaktorzy Ferechteh H. Teherani, David C. Look i David J. Rogers. SPIE, 2015. http://dx.doi.org/10.1117/12.2087319.
Pełny tekst źródłaMondal, B., S. Hungyo, C. Roychaudhury i H. Saha. "ZnO nano-rod based hydrogen sensor". W International Conference on Advanced Nanomaterials & Emerging Engineering Technologies (ICANMEET-2013). IEEE, 2013. http://dx.doi.org/10.1109/icanmeet.2013.6609323.
Pełny tekst źródłaFratilescu, Ion, i Eugenia Fagadar-Cosma. "Recovery of Waste Industrial Waters Containing Red Congo by Multifunctionalized Mesoporous Silica Nanomaterials". W Priochem 2021. Basel Switzerland: MDPI, 2022. http://dx.doi.org/10.3390/chemproc2022007019.
Pełny tekst źródłaKotsyubynsky, Volodymyr, Volodymyra Boychuk, Myroslava Hodlevska, Bogdan Rachiy, Liliia Turovska i Andrii Khopta. "Effect of Surfactants on the Synthesis of NiFe2O4/rGO Composites by Co-Precipitation Method". W 2022 IEEE 12th International Conference Nanomaterials: Applications & Properties (NAP). IEEE, 2022. http://dx.doi.org/10.1109/nap55339.2022.9934657.
Pełny tekst źródłaProkopiuk, Volodymyr, Anatolii Onishchenko, Svetlana Yefimova, Pavel Maksimchuk, Vladyslav Seminko, Oksana Nakonechna, Vladimir Klochkov, Nataliya Kavok i Anton Tkachenko. "Size-dependent Effect of CeO2 Nanoparticles on ROS Generation in Red Blood Cells". W 2022 IEEE 12th International Conference Nanomaterials: Applications & Properties (NAP). IEEE, 2022. http://dx.doi.org/10.1109/nap55339.2022.9934177.
Pełny tekst źródłaSingh, Prashant, Seul-Yi Lee i Roop L. Mahajan. "An Experimental Investigation of the Contribution of Different Carbonaceous Nanomaterials to Thermal Conductance of Thermal Interface Materials". W ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-11553.
Pełny tekst źródłaPerekrestov, Vyacheslav, Yuliia Kosminska i Borys Dyoshyn. "Structure and Composition of (CrCoNiWTaHfZrTi)C Coatings Obtained by Magnetron Sputtering of a Rod-Like Segmented Target". W 2019 IEEE 9th International Conference Nanomaterials: Applications & Properties (NAP). IEEE, 2019. http://dx.doi.org/10.1109/nap47236.2019.216936.
Pełny tekst źródłaPanda, Manas Ranjan, Anish Raj K., Ananta Sarkar, Qiaoliang Bao i Sagar Mitra. "Electrochemical investigation of MoTe2/rGO composite materials for sodium-ion battery application". W INTERNATIONAL CONFERENCE ON NANOMATERIALS FOR ENERGY CONVERSION AND STORAGE APPLICATIONS: NECSA 2018. Author(s), 2018. http://dx.doi.org/10.1063/1.5035235.
Pełny tekst źródła