Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Résonance lower-Hybrid du plasma.

Artykuły w czasopismach na temat „Résonance lower-Hybrid du plasma”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Résonance lower-Hybrid du plasma”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Verdon, Alix L., I. H. Cairns, D. B. Melrose i P. A. Robinson. "Properties of lower hybrid waves". Proceedings of the International Astronomical Union 4, S257 (wrzesień 2008): 569–73. http://dx.doi.org/10.1017/s1743921309029871.

Pełny tekst źródła
Streszczenie:
AbstractMost treatments of lower hybrid waves include either electromagnetic or warm-plasma effects, but not both. Here we compare numerical dispersion curves for lower hybrid waves with a new analytic dispersion relation that includes both warm and electromagnetic effects. Very good agreement is obtained over significant ranges in wavenumber and plasma parameters, except where ion magnetization effects become important.
Style APA, Harvard, Vancouver, ISO itp.
2

Kintner, P. M., J. Vago, S. Chesney, R. L. Arnoldy, K. A. Lynch, C. J. Pollock i T. E. Moore. "Localized lower hybrid acceleration of ionospheric plasma". Physical Review Letters 68, nr 16 (20.04.1992): 2448–51. http://dx.doi.org/10.1103/physrevlett.68.2448.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Kostrov, A. V., A. V. Strikovskiy i A. V. Shashurin. "Plasma Turbulence near the Lower Hybrid Resonance". Plasma Physics Reports 27, nr 2 (luty 2001): 137–42. http://dx.doi.org/10.1134/1.1348491.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Maity, Chandan, Nikhil Chakrabarti i Sudip Sengupta. "Nonlinear lower-hybrid oscillations in cold plasma". Physics of Plasmas 17, nr 8 (sierpień 2010): 082306. http://dx.doi.org/10.1063/1.3480644.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Rapozo, Cândido da Cunha, Antonio Serbêto i Lindolff Thadeu Carneiro. "Lower Hybrid Plasma Heating with Anisotropic Temperature". Japanese Journal of Applied Physics 32, Part 1, No. 7 (15.07.1993): 3282–86. http://dx.doi.org/10.1143/jjap.32.3282.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

BINGHAM, R., J. M. DAWSON i V. D. SHAPIRO. "Particle acceleration by lower-hybrid turbulence". Journal of Plasma Physics 68, nr 3 (kwiecień 2002): 161–72. http://dx.doi.org/10.1017/s0022377802001939.

Pełny tekst źródła
Streszczenie:
We investigate particle acceleration by strong lower-hybrid turbulence produced by the relaxation of an energetic perpendicular ion ring distribution. Ion ring distributions are associated with counterstreaming plasma flows in a magnetic field, and are found at perpendicular shocks as a result of ion reflection from the shock surface. Using a 2½D particle-in-cell (PIC) code that is fully electromagnetic and relativistic, we show that the ion ring is unstable to the generation of strong plasma turbulence at the lower-hybrid resonant frequency. The lower-hybrid wave turbulence collapses in configuration space, producing density cavities. The collapse of the cavities is halted by particle acceleration, producing energetic electron and ion tails. For solar flare plasmas with temperatures of 1 keV and a ratio of the plasma frequency to the electron cyclotron frequency of ½, we demonstrate electron acceleration to energies up to MeV, while the ions are accelerated to energies in the region of several MeV.
Style APA, Harvard, Vancouver, ISO itp.
7

Abdul Rauf, I. Zeba i Muhammad Saqlain. "Modified Dust-Lower-Hybrid Waves in Quantum Plasma". Scientific Inquiry and Review 2, nr 2 (30.04.2018): 11–21. http://dx.doi.org/10.32350/22/020202.

Pełny tekst źródła
Streszczenie:
Dust-lower-hybrid waves in quantum plasma have been studied. The dispersion relation of the dust-lower-hybrid wave has been examined using the quantum hydrodynamic model of plasma in an ultra-cold Fermi dusty plasma in the presence of a uniform external magnetic field. Graphical analysis shows that the electron Fermi temperature effect and the quantum corrections give rise to significant effects on the dust-lower-hybrid wave of the magnetized quantum dusty plasma.
Style APA, Harvard, Vancouver, ISO itp.
8

Rauf, Abdul, I. Zeba i M. Saqlain. "Modified Dust-Lower-Hybrid Waves In Quantum Plasma". Scientific Inquiry and Review 2, nr 2 (kwiecień 2018): 10–19. http://dx.doi.org/10.29145/sir/22/020202.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Praburam, G. "Lower‐hybrid quasimode decay in a plasma cylinder". Physics of Fluids B: Plasma Physics 3, nr 7 (lipiec 1991): 1576–78. http://dx.doi.org/10.1063/1.859676.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Weitzner, Harold. "Lower hybrid waves in the cold plasma model". Communications on Pure and Applied Mathematics 38, nr 6 (listopad 1985): 919–32. http://dx.doi.org/10.1002/cpa.3160380618.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Pericoli-Ridolfini, V. "Lower hybrid effects on the FT scrape-off plasma". Plasma Physics and Controlled Fusion 27, nr 6 (1.06.1985): 709–15. http://dx.doi.org/10.1088/0741-3335/27/6/006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Alladio, F., E. Barbato, G. Bardotti, R. Bartiromo, G. Bracco, F. Bombarda, G. Buceti i in. "Energy confinement and plasma heating during lower hybrid experiments". Plasma Physics and Controlled Fusion 28, nr 1A (1.01.1986): 179–90. http://dx.doi.org/10.1088/0741-3335/28/1a/016.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

An, T., R. L. Merlino i N. D’Angelo. "Lower‐hybrid waves in a plasma with negative ions". Physics of Fluids B: Plasma Physics 5, nr 6 (czerwiec 1993): 1917–18. http://dx.doi.org/10.1063/1.860775.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Kim, S. H., J. F. Artaud, V. Basiuk, A. Bécoulet, V. Dokuka, G. T. Hoang, F. Imbeaux, R. R. Khayrutdinov, J. B. Lister i V. E. Lukash. "Lower hybrid assisted plasma current ramp-up in ITER". Plasma Physics and Controlled Fusion 51, nr 6 (6.05.2009): 065020. http://dx.doi.org/10.1088/0741-3335/51/6/065020.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Maity, Chandan, i Nikhil Chakrabarti. "Nonlinear lower hybrid oscillations in a cold viscous plasma". Physics of Plasmas 18, nr 12 (grudzień 2011): 124502. http://dx.doi.org/10.1063/1.3672004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Wei, Rui, i Yinhua Chen. "Nonlinear Lower Hybrid Waves in Two-ion-species Plasma". Physica Scripta 71, nr 6 (1.01.2005): 648–51. http://dx.doi.org/10.1088/0031-8949/71/6/012.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Tirozzi, Brunello. "Scattering of Lower Hybrid Waves in a Magnetized Plasma". Physics 2, nr 4 (29.11.2020): 640–53. http://dx.doi.org/10.3390/physics2040037.

Pełny tekst źródła
Streszczenie:
In this paper, the Maxwell equations for the electric field in a cold magnetized plasma in the half-space of x≥0 cm are solved. The boundary conditions for the electric field include a pointwise source at the plane x=0 cm, the derivatives of the electric field that are zero statV/cm2 at x=0 cm, and the field with all its derivatives that are zero at infinity. The solution is explored in terms of the Laplace transform in x and the Fourier transform in y-z directions. The expressions of the field components are obtained by the inverse Laplace transform and the inverse Fourier transform. The saddle-point technique and power expansion have been used for evaluating the inverse Fourier transform. The model represents the propagation of a lower hybrid wave generated by a pointwise antenna located at the boundary of the plasma. Here, the antenna is the boundary condition. The validation of the model is performed assuming that the electric field component Ey=0 statV/cm and by comparing it with the model of electromagnetic waves generated by a local small antenna located near the boundary of a tokamak, and an experiment is suggested.
Style APA, Harvard, Vancouver, ISO itp.
18

da C. Rapozo, C., A. S. de Assis, A. Serbêto i L. T. Carneiro. "Lower hybrid plasma heating in a magnetic-mirror field". Physical Review A 45, nr 10 (1.05.1992): 7469–74. http://dx.doi.org/10.1103/physreva.45.7469.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Petržilka, V. A. "On lower hybrid wave scattering by plasma density fluctuations". Czechoslovak Journal of Physics 38, nr 8 (sierpień 1988): 937–40. http://dx.doi.org/10.1007/bf01601839.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Deka, P. N., i S. Gogoi. "The Wave Energy Up Conversion of Plasma Wave in Inhomogeneous Ionosphereic Plasma". Journal of Scientific Research 11, nr 3 (1.09.2019): 339–50. http://dx.doi.org/10.3329/jsr.v11i3.40982.

Pełny tekst źródła
Streszczenie:
Different types of instabilities are observed in the thermodynamically nonequilibrium Earth's ionosphere. Effective energy exchange process among waves may takes place through nonlinear interaction modes because of availability of free energy. We consider gradients in density and magnetic field is present in the system which support drift wave turbulence. In this study we concern on the wave energy up conversion of electrostatic nonresonant lower hybrid wave through plasma maser instability in the mid-altitude ionospheric region. We have formulated the growth rate of lower hybrid wave by Vlasov-Poisson mathematical frame and estimated its value by observational data.
Style APA, Harvard, Vancouver, ISO itp.
21

Kikuchi, Tetsuo, Keitaro Ohnishi, Yasuyoshi Yasaka, Kunihide Tachibana i Tohru Itoh. "Plasma Production and Wave Propagation in a Plasma Source Using Lower Hybrid Waves". Japanese Journal of Applied Physics 38, Part 1, No. 7B (30.07.1999): 4351–56. http://dx.doi.org/10.1143/jjap.38.4351.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Das, A. C. "Lower hybrid turbulence and tearing mode instability in magnetospheric plasma". Journal of Geophysical Research 97, A8 (1992): 12275. http://dx.doi.org/10.1029/92ja00446.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Prakash, Ved, Vijayshri, Suresh C. Sharma i Ruby Gupta. "Electron beam driven lower hybrid waves in a dusty plasma". Physics of Plasmas 20, nr 5 (maj 2013): 053701. http://dx.doi.org/10.1063/1.4803506.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Praburam, G., V. K. Tripathi i V. K. Jain. "Lower hybrid suppression of drift waves in a plasma cylinder". Physics of Fluids 31, nr 10 (1988): 3145. http://dx.doi.org/10.1063/1.866972.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Sharma, S. K., i A. Sudarshan. "Modulational instability of lower hybrid wave in a cylindrical plasma". Physica Scripta 48, nr 5 (1.11.1993): 612–15. http://dx.doi.org/10.1088/0031-8949/48/5/018.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Amin, M. R., A. M. Rizwan, M. K. Islam, M. Salimullah i P. K. Shukla. "Dust-lower-hybrid instability in a streaming magnetized dusty plasma". Physica Scripta 73, nr 2 (11.01.2006): 169–72. http://dx.doi.org/10.1088/0031-8949/73/2/007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

D'Angelo, N. "Dust–dust lower hybrid waves in a collisional dusty plasma". Physics Letters A 299, nr 2-3 (lipiec 2002): 226–29. http://dx.doi.org/10.1016/s0375-9601(02)00682-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Kuo, S. P. "Parametric excitation of lower hybrid waves by electron plasma waves". Physics Letters A 307, nr 4 (luty 2003): 244–48. http://dx.doi.org/10.1016/s0375-9601(02)01601-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Salimullah, M. "Low-frequency dust-lower-hybrid modes in a dusty plasma". Physics Letters A 215, nr 5-6 (czerwiec 1996): 296–98. http://dx.doi.org/10.1016/0375-9601(96)00226-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Hillairet, Julien, Riccardo Ragona, Laurent Colas, Walid Helou i Frédéric Bocquet. "Lower hybrid range cold magnetized plasma coupling in ANSYS HFSS". Fusion Engineering and Design 146 (wrzesień 2019): 1473–75. http://dx.doi.org/10.1016/j.fusengdes.2019.02.108.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Nave, M. F. F., K. Kirov, J. Bernardo, M. Brix, J. Ferreira, C. Giroud, N. Hawkes i in. "The effect of lower hybrid waves on JET plasma rotation". Nuclear Fusion 57, nr 3 (22.12.2016): 034002. http://dx.doi.org/10.1088/1741-4326/aa4e54.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Takase, Y., M. Honda, Y. Ikeda, T. Imai, K. Sakamoto, S. Tsuji, K. Uehara i K. Ushigusa. "Analysis of lower hybrid current driven plasma in JT-60". Nuclear Fusion 28, nr 6 (1.06.1988): 1112–16. http://dx.doi.org/10.1088/0029-5515/28/6/014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Bose, M. "Lower hybrid drift waves in a plasma with negative ions". Plasma Physics and Controlled Fusion 37, nr 3 (1.03.1995): 223–28. http://dx.doi.org/10.1088/0741-3335/37/3/004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Maity, Chandan, Nikhil Chakrabarti i Sudip Sengupta. "Relativistic effects on nonlinear lower hybrid oscillations in cold plasma". Journal of Mathematical Physics 52, nr 4 (kwiecień 2011): 043101. http://dx.doi.org/10.1063/1.3574354.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Guan, Xiaoyin, Hong Qin, Jian Liu i Nathaniel J. Fisch. "On the toroidal plasma rotations induced by lower hybrid waves". Physics of Plasmas 20, nr 2 (luty 2013): 022502. http://dx.doi.org/10.1063/1.4791666.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Sugaya, Reiji. "Plasma Heating by Nonlinear Landau Damping of Lower-Hybrid Waves". Journal of the Physical Society of Japan 59, nr 9 (15.09.1990): 3227–36. http://dx.doi.org/10.1143/jpsj.59.3227.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Iqbal, Z., U. Khanum i G. Murtaza. "Lower hybrid wave instability in a spin-polarized degenerate plasma". Contributions to Plasma Physics 59, nr 3 (16.10.2018): 284–91. http://dx.doi.org/10.1002/ctpp.201800075.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Bharuthram, R., i S. G. Tagare. "Electron-temperature effects on lower-hybrid-drift vortices". Journal of Plasma Physics 44, nr 2 (październik 1990): 265–68. http://dx.doi.org/10.1017/s0022377800015166.

Pełny tekst źródła
Streszczenie:
The nonlinear evolution of lower-hybrid-drift waves in an inhomogeneous magnetized plasma with warm electrons and cold ions is considered. The effect of finite electron temperature on a soliton solution of the set of nonlinear equations is examined.
Style APA, Harvard, Vancouver, ISO itp.
39

Hamabata, Hiromitsu, Tomikazu Namikawa i Kazuhiro Mori. "The effect of lower-hybrid waves on the propagation of hydromagnetic waves". Journal of Plasma Physics 40, nr 2 (październik 1988): 337–51. http://dx.doi.org/10.1017/s0022377800013313.

Pełny tekst źródła
Streszczenie:
Propagation characteristics of hydromagnetic waves in a magnetic plasma are investigated using the two-plasma fluid equations including the effect of lower-hybrid waves propagating perpendicularly to the magnetic field. The effect of lower-hybrid waves on the propagation of hydromagnetic waves is analysed in terms of phase speed, growth rate, refractive index, polarization and the amplitude relation between the density perturbation and the magnetic-field perturbation for the cases when hydromagnetic waves propagate in the plane whose normal is perpendicular to both the magnetic field and the propagation direction of lower-hybrid waves and in the plane perpendicular to the propagation direction of lower-hybrid waves. It is shown that hydromagnetic waves propagating at small angles to the propagation direction of lower-hybrid waves can be excited by the effect of lower-hybrid waves and the energy of excited waves propagates nearly parallel to the propagation direction of lower-hybrid waves.
Style APA, Harvard, Vancouver, ISO itp.
40

Akimoto, K., K. Papadopoulos i D. Winske. "Lower-hybrid instabilities driven by an ion velocity ring". Journal of Plasma Physics 34, nr 3 (grudzień 1985): 445–65. http://dx.doi.org/10.1017/s0022377800003007.

Pełny tekst źródła
Streszczenie:
The lower-hybrid instabilities in high-beta (ratio of plasma to magnetic pressure) plasmas driven by ring-ion distributions in velocity space are investigated. A dispersion equation including electromagnetic effects is derived. In the low-beta limit, analytic expressions are obtained which illuminate the physical nature of the instabilities. The complete dispersion equation is solved numerically as a function of ring speed and plasma beta for several types of ring distribution. Electromagnetic effects are important for relatively energetic rings even in the low-beta regime, suppressing growth rates and shifting the angle of propagation to more oblique angles. Stabilization by thermal effects is also discussed. Application of these results to the Earth's bow shock, AMPTE, comets and solar flares is suggested.
Style APA, Harvard, Vancouver, ISO itp.
41

Hall, J. O., G. Stenberg, A. I. Eriksson i M. André. "Formation of lower-hybrid solitary structures by modulational interaction between lower-hybrid and dispersive Alfvén waves". Annales Geophysicae 27, nr 3 (2.03.2009): 1027–33. http://dx.doi.org/10.5194/angeo-27-1027-2009.

Pełny tekst źródła
Streszczenie:
Abstract. We investigate the possibility that lower-hybrid solitary structures (LHSS), which are frequently observed in the Earth's ionosphere and magnetosphere, are formed as a result of a modulational interaction between lower-hybrid and dispersive Alfvén waves of initially small amplitude. A large amplitude lower-hybrid pump wave can excite density structures with length scales transverse to the geomagnetic field of the order of the ion gyroradius via a modulational instability. The structure formation in the nonlinear stage of the instability is investigated by numerical solutions of the governing equations, using plasma parameters relevant for LHSS observations in the upper ionosphere and in the magnetosphere. The numerical solutions reveal that the lower-hybrid waves become self-localized inside cylindrically symmetric (with respect to the ambient magnetic field) density cavities, in qualitative agreement with observations. Our model includes thermal electron effects but shows no stabilization at the ion sound gyroradius, suggesting that any preference of observed LHSS for that perpendicular scale likely is due to processes arresting the cavity collapse.
Style APA, Harvard, Vancouver, ISO itp.
42

Sharma, P. K., D. Raju, S. K. Pathak, R. Srinivasan, K. K. Ambulkar, P. R. Parmar, C. G. Virani i in. "Current drive experiments in SST1 tokamak with lower hybrid waves". Nuclear Fusion 62, nr 5 (28.03.2022): 056020. http://dx.doi.org/10.1088/1741-4326/ac4297.

Pełny tekst źródła
Streszczenie:
Abstract The steadystate superconducting tokamak (SST1) is aimed to demonstrate long pulse plasma discharges employing non-inductive current drive by means of lower hybrid current drive (LHCD) system. The major and minor radius of the machine is 1.1 m and 0.2 m, respectively. The LHCD system for SST1 comprises of klystrons, each rated for 0.5 MW-CW rf power at a frequency of 3.7 GHz. The grill antenna comprises of two rows, each row accommodating 32 waveguide elements. Electron cyclotron resonance breakdown assisted Ohmic plasma is formed in SST1 to overcome the issues associated with low loop voltage start-ups. With recent modifications in the poloidal coils configuration, even with narrow EC pulse (∼50 ms), good repeatable and consistent Ohmic plasmas could be produced which helped in carrying out LHCD current drive experiments on SST1. These experiments demonstrated both fully as well as partially driven non-inductive plasma current in SST1 tokamak. Discharges with zero loop voltages were obtained. The interaction of lower hybrid waves with plasma and generation of suprathermal electrons could be established using energy spectra measured by CdTe detectors. Various other signatures like drop in loop voltages, negative loop voltages, spikes in hard x-rays and increase in second harmonic ECE signal, further confirmed the current drive by LHW’s. The beneficial effect of LHW’s in suppressing hard x-rays was also demonstrated in these experiments. The longest discharge of ∼650 ms could be obtained in SST1 with the help of LHW’s. In this paper, the experimental results obtained with LHCD experiments on SST1 is reported and discussed in more details.
Style APA, Harvard, Vancouver, ISO itp.
43

Shklyar, David R., i Haruichi Washimi. "Lower hybrid resonance wave excitation by whistlers in the magnetospheric plasma". Journal of Geophysical Research 99, A12 (1994): 23695. http://dx.doi.org/10.1029/94ja01956.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Konar, S., V. K. Jain i V. K. Tripathi. "Modulational instability of a lower hybrid wave in a plasma slab". Journal of Applied Physics 65, nr 10 (15.05.1989): 3798–801. http://dx.doi.org/10.1063/1.343392.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Watterson, R. L., Y. Takase, P. T. Bonoli, M. Porkolab, R. E. Slusher i C. M. Surko. "Spectrum and propagation of lower-hybrid waves in a tokamak plasma". Physics of Fluids 28, nr 8 (1985): 2622. http://dx.doi.org/10.1063/1.865220.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Maehara, T., S. Yoshimura, T. Minami, K. Hanada, M. Nakamura, T. Maekawa i Y. Terumichi. "Electron cyclotron current drive in a lower hybrid current drive plasma". Nuclear Fusion 38, nr 1 (styczeń 1998): 39–57. http://dx.doi.org/10.1088/0029-5515/38/1/304.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Prakash, Ved, Vijayshri, Suresh C. Sharma i Ruby Gupta. "Ion-beam driven lower hybrid waves in a magnetized dusty plasma". Physics of Plasmas 20, nr 6 (czerwiec 2013): 063701. http://dx.doi.org/10.1063/1.4811392.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Pericoli-Ridolfini, V., E. Barbato, S. Cirant, H. Kroegler, L. Panaccione, S. Podda, F. Alladio i in. "High Plasma Density Lower-Hybrid Current Drive in the FTU Tokamak". Physical Review Letters 82, nr 1 (4.01.1999): 93–96. http://dx.doi.org/10.1103/physrevlett.82.93.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Mahanta, L., K. S. Goswami i S. Bujarbarua. "Lower‐hybrid‐like wave in a dusty plasma with charge fluctuation". Physics of Plasmas 3, nr 2 (luty 1996): 694–95. http://dx.doi.org/10.1063/1.871903.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Verma, Prabal Singh. "Lower-hybrid oscillations in a cold magnetized electron-positron-ion plasma". AIP Advances 8, nr 3 (marzec 2018): 035022. http://dx.doi.org/10.1063/1.5023058.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii