Gotowa bibliografia na temat „Resistance to therapies”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Resistance to therapies”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Resistance to therapies"
Gupta, P. D. "Reducing drug resistance should be the aim of therapies". Clinical Research and Clinical Trials 3, nr 4 (30.04.2021): 01–05. http://dx.doi.org/10.31579/2693-4779/028.
Pełny tekst źródłaBartolotti, Marco, Enrico Franceschi, Rosalba Poggi, Alicia Tosoni, Monica Di Battista i Alba A. Brandes. "Resistance to antiangiogenic therapies". Future Oncology 10, nr 8 (czerwiec 2014): 1417–25. http://dx.doi.org/10.2217/fon.14.57.
Pełny tekst źródłaPrasad, Rajendra, Atanu Banerjee i Abdul Haseeb Shah. "Resistance to antifungal therapies". Essays in Biochemistry 61, nr 1 (28.02.2017): 157–66. http://dx.doi.org/10.1042/ebc20160067.
Pełny tekst źródłaTejpar, Sabine, Hans Prenen i Massimiliano Mazzone. "Overcoming Resistance to Antiangiogenic Therapies". Oncologist 17, nr 8 (6.07.2012): 1039–50. http://dx.doi.org/10.1634/theoncologist.2012-0068.
Pełny tekst źródłaSledge, George W. "Resistance to Anti-HER2 Therapies". Breast 20 (październik 2011): S16. http://dx.doi.org/10.1016/j.breast.2011.08.014.
Pełny tekst źródłaLawrence Drew, W. "Cytomegalovirus resistance to antiviral therapies". American Journal of Health-System Pharmacy 53, suppl_2 (1.04.1996): S17—S23. http://dx.doi.org/10.1093/ajhp/53.8_suppl_2.s17.
Pełny tekst źródłaThangavadivel, Shanmugapriya, i Jennifer A. Woyach. "Genomics of Resistance to Targeted Therapies". Hematology/Oncology Clinics of North America 35, nr 4 (sierpień 2021): 715–24. http://dx.doi.org/10.1016/j.hoc.2021.03.004.
Pełny tekst źródłaGuièze, Romain. "Mechanisms of resistance to targeted therapies". Hématologie 26, S3 (wrzesień 2020): 20–26. http://dx.doi.org/10.1684/hma.2020.1564.
Pełny tekst źródłaFong, Chun Yew, Omer Gilan, Enid Lam, Alan Rubin, Jessica Morison, George Giotopoulos, Kym Stanley i in. "Modelling Resistance to Emerging Epigenetic Therapies". Blood 124, nr 21 (6.12.2014): 3546. http://dx.doi.org/10.1182/blood.v124.21.3546.3546.
Pełny tekst źródłaSmith, Sinéad M., Colm O’Morain i Deirdre McNamara. "Helicobacter pylori resistance to current therapies". Current Opinion in Gastroenterology 35, nr 1 (styczeń 2019): 6–13. http://dx.doi.org/10.1097/mog.0000000000000497.
Pełny tekst źródłaRozprawy doktorskie na temat "Resistance to therapies"
Hewlett, Mark. "The evolution of resistance to multidrug antibiotic therapies". Thesis, University of Exeter, 2015. http://hdl.handle.net/10871/21596.
Pełny tekst źródłaGuix, Arnau Marta 1974. "Mechanisms of acquired resistance to anti-EGFR therapies in squamous cell carcinoma". Doctoral thesis, Universitat Pompeu Fabra, 2017. http://hdl.handle.net/10803/565440.
Pełny tekst źródłaEls tractaments dirigits contra el receptor del factor de creixement epidèrmic (EGFR) són útils en diversos càncers en l’home, com el càncer de pulmó de cèl·lula no petita, el càncer colorrectal o els tumors de cap i coll. Però l’eficàcia d’aquests tractaments sempre està limitada per l’aparició de resistències. Aquesta tesi doctoral s’ha centrat en investigar els mecanismes de resistència adquirida a tractaments dirigits contra l’EGFR (com els inhibidors tirosina quinasa gefitinib i erlotinib o l’anticòs monoclonal cetuximab) en carcinomes escamosos. En la primera part de la tesi s’han desenvolupat estudis preclínics amb models cel·lulars i xenoinjerts per desxifrar els mecanismes moleculars de resistència; la segona part de la tesi ha inclòs estudis en mostres de carcinomes escatosos de cap i coll de pacients amb tumors avançats. La troballa principal dels estudis preclínics ha estat que l’activació del sistema del receptor del factor de creixement semblant a la insulina, principalment a través de la disminució dels nivells de les proteïnes d’unió als factors de creixement semblants a la insulina, és la responsable de l’aparició de resistència adquirida als tractaments anti-EGFR. Posteriorment, però, aquests resultats no han estat validats en una petita cohort de pacients amb tumors avançats de cap i coll.
McGivern, Niamh. "Activation of MAPK signalling results in resistance to therapies for ovarian cancer". Thesis, Queen's University Belfast, 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.695671.
Pełny tekst źródłaSun, Xiaowen. "An integrin-based mechanism for sensitizing melanomas to therapies". Diss., University of Iowa, 2015. https://ir.uiowa.edu/etd/6506.
Pełny tekst źródłaNeto, João Manuel Fernandes. "Improvement of antiangiogenic therapies in colorectal cancer". Master's thesis, Universidade de Aveiro, 2015. http://hdl.handle.net/10773/15349.
Pełny tekst źródłaAngiogenesis is essential for tumor progression. Antiangiogenic therapies block angiogenesis and cause vessel regression, which leads to an increase of tumor hypoxia. Hypoxia is responsible for many effects in tumor biology, among which, the selection of cells that are more aggressive and more resistant to cancer therapies. In this project we aim to get some molecular insight on the mechanism(s) underlying the resistance to the combination of bevacizumab and cetuximab and to find synthetic lethal interactions with hypoxia. Our results show that: hypoxia induces resistance to EGFR inhibition in WT4 CRC cell; HIF1α is not driving the resistance phenotype; hypoxia activates RAS in WT4 CRC cells; MEK inhibitors increase the sensitivity to EGFR inhibitors in hypoxia and cytokines seem to be involved in the activation of RAS in hypoxia. We also identified four genes as potential candidates to be synthetic lethal with hypoxia. Our findings are of great clinical and biological significance and may lead to better combination therapies, improving current treatments for CRC patients and may also lead to the discovery of biomarkers of response to antiangiogenic therapies.
A angiogénese é essencial à progressão tumoral. As terapias antiangiogénicas bloqueiam a angiogénese e causam regressão dos vasos sanguíneos, o que leva a um aumento da hipóxia nos tumores. A hipóxia é responsável por diversos efeitos na biologia tumoral, entre os quais, a seleção de células cancerígenas mais agressivas e mais resistentes às terapias. Com este projeto pretendemos descobrir o mecanismo molecular envolvido na resistência à combinação de bevacizumab e cetuximab e também encontrar interações de letalidade sintética com hipóxia. Os nossos resultados mostram que: a hipóxia induz resistência à inibição de EGFR em células WT4 de cancro coloretal; o HIF1α não é responsável pelo fenótipo de resistência; a hipóxia ativa RAS em células WT4 de cancro coloretal; os inibidores de MEK aumentam a sensibilidade aos inibidores de EGFR em hipóxia e as citoquinas parecem estar envolvidas na ativação de RAS em hipóxia. Identificámos ainda quatro genes que são potenciais candidatos a terem letalidade sintética com hipóxia. Estes resultados têm uma grande importância clínica e biológica e podem conduzir a melhores terapias combinatórias, contribuindo para melhorar os atuais tratamentos de pacientes com cancro coloretal e podem ainda levar à descoberta de biomarcadores de resposta a terapias antiangiogénicas.
Phee, Lynette. "Unorthodox antimicrobial combination therapies for the treatment of multi-drug resistant Gram-negative infections". Thesis, Queen Mary, University of London, 2018. http://qmro.qmul.ac.uk/xmlui/handle/123456789/44695.
Pełny tekst źródłaCerqueira, Vera. "Role of intracellular signalling pathways in conferring resistance to endocrine therapies in breast cancer". Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/4511.
Pełny tekst źródłaYeoman, Kathryn (Kate) Charlotte. "Working the System: Doing Postmodern Therapies in Aotearoa New Zealand". Thesis, University of Canterbury. Humanities, 2012. http://hdl.handle.net/10092/7274.
Pełny tekst źródłaSöderhäll, Thomas. "Antibiotic combination therapies against carbapenamse producing Klebsiella pneumoniae". Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-452424.
Pełny tekst źródłaSalazar, Marcela d'Alincourt. "Genomic Effects of Hormonal Adjuvant Therapies that Could Support the Emergence of Drug Resistance in Breast Cancer". University of Toledo Health Science Campus / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=mco1280929084.
Pełny tekst źródłaKsiążki na temat "Resistance to therapies"
Xavier, Ana C., i Mitchell S. Cairo, red. Resistance to Targeted Therapies in Lymphomas. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-24424-8.
Pełny tekst źródłaLing, Silvia CW, i Steven Trieu, red. Resistance to Targeted Therapies in Multiple Myeloma. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73440-4.
Pełny tekst źródłaVillanueva, Augusto, red. Resistance to Molecular Therapies for Hepatocellular Carcinoma. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56197-4.
Pełny tekst źródłaProsperi, Jenifer R., red. Resistance to Targeted Therapies in Breast Cancer. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70142-4.
Pełny tekst źródłaTivnan, Amanda, red. Resistance to Targeted Therapies Against Adult Brain Cancers. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46505-0.
Pełny tekst źródłaSzewczuk, Myron R., Bessi Qorri i Manpreet Sambi, red. Current Applications for Overcoming Resistance to Targeted Therapies. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21477-7.
Pełny tekst źródłaFerreri, Andrés J. M., red. Resistance of Targeted Therapies Excluding Antibodies for Lymphomas. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75184-9.
Pełny tekst źródłaCappuzzo, Federico. Guide to Targeted Therapies: Treatment Resistance in Lung Cancer. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20741-4.
Pełny tekst źródłaScardino, Peter T. Targeted Therapies for Castration-Resistant Prostate Cancer. Unitec House, 2 Albert Place, London N3 1QB, UK: Future Medicine Ltd, 2011. http://dx.doi.org/10.2217/9781780840109.
Pełny tekst źródłaMichael, Neenan, red. Working with resistance in rational emotive behaviour therapy: A practitioner's guide. London: Routledge, 2012.
Znajdź pełny tekst źródłaCzęści książek na temat "Resistance to therapies"
Weber, Georg F. "Drug Resistance". W Molecular Therapies of Cancer, 407–21. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13278-5_16.
Pełny tekst źródłaMcEwan, Ashley, i Silvia CW Ling. "Bone Targeted Therapies". W Resistance to Targeted Anti-Cancer Therapeutics, 105–27. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73440-4_8.
Pełny tekst źródłaPepper, John W. "Somatic Evolution of Acquired Drug Resistance in Cancer". W Targeted Therapies, 127–34. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-60761-478-4_7.
Pełny tekst źródłaKroll, David S. "Treatment Resistance and Advanced Therapies". W Caring for Patients with Depression in Primary Care, 61–73. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08495-9_6.
Pełny tekst źródłaQadri, Hafsa, Manzoor Ahmad Mir i Abdul Haseeb Shah. "Antifungal Therapies and Drug Resistance". W Human Fungal Diseases, 130–45. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781032642864-10.
Pełny tekst źródłaDai, Yun, i Steven Grant. "Rational Combination of Targeted Agents to Overcome Cancer Cell Resistance". W Targeted Therapies, 171–95. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-60761-478-4_10.
Pełny tekst źródłaLage, Hermann, i Carsten Denkert. "Resistance to Chemotherapy in Ovarian Carcinoma". W Targeted Therapies in Cancer, 51–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-46091-6_6.
Pełny tekst źródłaLyons, Anna T., i Jenifer R. Prosperi. "Targeted Therapies in Breast Cancer". W Resistance to Targeted Anti-Cancer Therapeutics, 139–54. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70142-4_6.
Pełny tekst źródłaGunther, Edward. "Interrogating Resistance to Targeted Therapy Using Genetically Engineered Mouse Models of Cancer". W Targeted Therapies, 135–53. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-60761-478-4_8.
Pełny tekst źródłaSrivastava, Rupali, Ananya Padmakumar, Paloma Patra, Sushma V. Mudigunda i Aravind Kumar Rengan. "Phytonanotechnologies for Addressing Antimicrobial Resistance". W Medicinal Plants and Antimicrobial Therapies, 191–225. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-7261-6_9.
Pełny tekst źródłaStreszczenia konferencji na temat "Resistance to therapies"
Brugge, JS, T. Muranen, J. Zoeller, D. Worster, M. Iwanicki, L. Selfors i G. Mills. "DL1-1: Adaptive Resistance to Targeted Therapies." W Abstracts: Thirty-Fourth Annual CTRC‐AACR San Antonio Breast Cancer Symposium‐‐ Dec 6‐10, 2011; San Antonio, TX. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/0008-5472.sabcs11-dl1-1.
Pełny tekst źródłaLi, Zhenghong, Carrie Qi Sun, Rebecca Arnold, John A. Petros i Carlos S. Moreno. "Abstract 284: Combination therapies to prevent resistance to androgen deprivation therapies in prostate cancer". W Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-284.
Pełny tekst źródłaLi, Zhenghong, Carrie Qi Sun, Rebecca Arnold, John A. Petros i Carlos S. Moreno. "Abstract 284: Combination therapies to prevent resistance to androgen deprivation therapies in prostate cancer". W Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-284.
Pełny tekst źródłaZhang, Baolin, Junjie Chen, Xu Di i Yaqin Zhang. "Abstract B246: Overcoming cancer resistance to death receptor targeted therapies." W Abstracts: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics--Oct 19-23, 2013; Boston, MA. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1535-7163.targ-13-b246.
Pełny tekst źródłaBrown, Wells S., i Michael Wendt. "Abstract B49: Epithelial-mesenchymal plasticity primes inherent resistance to targeted therapies". W Abstracts: AACR Special Conference on Tumor Metastasis; November 30-December 3, 2015; Austin, TX. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.tummet15-b49.
Pełny tekst źródłaLuna, Augustin, Özgün Babur, Gonghong Yan, Emek Demir, Chris Sander i Anil Korkut. "Abstract 2838: Discovery of adaptive resistance pathways and anti-resistance combination therapies in cancer from phosphoproteomic data". W Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-2838.
Pełny tekst źródłaMontero, Joan, Cecile Gstalder, Daniel J. Kim, Dorota Sadowicz, Wayne Miles, Michael Manos, Justin R. Cidado i in. "Abstract 62: Destabilization ofNOXAmRNA as a common resistance mechanism to targeted therapies". W Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-62.
Pełny tekst źródłaZamanian, Roham T., Mehdi Skhiri, Andrew Hsi, vinicio de Jesus Perez i Francois Haddad. "Impact Of PAH Specific Therapies On Insulin Resistance In Pulmonary Arterial Hypertension". W American Thoracic Society 2011 International Conference, May 13-18, 2011 • Denver Colorado. American Thoracic Society, 2011. http://dx.doi.org/10.1164/ajrccm-conference.2011.183.1_meetingabstracts.a5919.
Pełny tekst źródłaPoliti, Katerina A. "Abstract IA10: Modeling sensitivity and resistance to systemic therapies in lung cancer". W Abstracts: AACR Special Conference on the Evolving Landscape of Cancer Modeling; March 2-5, 2020; San Diego, CA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.camodels2020-ia10.
Pełny tekst źródłaLuna, Augustin, Heping Wang, Ozgun Babur, Chris Sander i Anil Korkut. "Abstract 3820: Discovery of adaptive resistance pathways and anti-resistance combination therapies from phosphoproteomic data using graphical models". W Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-3820.
Pełny tekst źródłaRaporty organizacyjne na temat "Resistance to therapies"
Li, wanlin, jie Yun, siying He, ziqi Zhou i ling He. Effect of different exercise therapies on fatigue in maintenance hemodialysis patients:A Bayesian Network Meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, listopad 2022. http://dx.doi.org/10.37766/inplasy2022.11.0144.
Pełny tekst źródła