Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Residence time distribution.

Artykuły w czasopismach na temat „Residence time distribution”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Residence time distribution”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Landfeld, A., R. Žitný, M. Houška, K. Kýhos i P. Novotná. "Residence time distribution during egg yolk pasteurisation". Czech Journal of Food Sciences 20, No. 5 (19.11.2011): 193–201. http://dx.doi.org/10.17221/3531-cjfs.

Pełny tekst źródła
Streszczenie:
This work describes the determination of the average residence times during egg yolk – and whole liquid eggs pasteurisation in an industrial pasteurisation equipment (plate pasteuriser + tube holder). For the detection of the impulse the conductivity method was used. Conductivity was then monitored using the bridge method. In the system, the total of 3 probes were placed. To mark the particles of the flowing product, salted yolk with the content of salt of 1.3 or 1.8% was used. In addition, rheological properties of pasteurised yolk were determined at the temperatures of 5, 25, 45, and 65°C. Based on the geometry of the channels in the individual sections of the pasteurisation equipment, the character of the flow was estimated using the Re criterion and was found to be laminar in all parts of the system. The work includes the comparison of the average residence times obtained by (a) the method of volumes, (b) the analysis of the conductivity response, (c) the estimate made by using the TUPLEX software, and (d) the estimate of the peaks of the conductivity response.  
Style APA, Harvard, Vancouver, ISO itp.
2

Iordache, Octavian, i Sergiu Corbu. "Random residence time distribution". Chemical Engineering Science 41, nr 8 (1986): 2099–102. http://dx.doi.org/10.1016/0009-2509(86)87127-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Werner, Timothy M., i Robert H. Kadlec. "Wetland residence time distribution modeling". Ecological Engineering 15, nr 1-2 (czerwiec 2000): 77–90. http://dx.doi.org/10.1016/s0925-8574(99)00036-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Rodrigues, Alírio E. "Residence time distribution (RTD) revisited". Chemical Engineering Science 230 (luty 2021): 116188. http://dx.doi.org/10.1016/j.ces.2020.116188.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Li, Mingheng. "Residence time distribution in RO channel". Desalination 506 (czerwiec 2021): 115000. http://dx.doi.org/10.1016/j.desal.2021.115000.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Martin, A. D. "Interpretation of residence time distribution data". Chemical Engineering Science 55, nr 23 (grudzień 2000): 5907–17. http://dx.doi.org/10.1016/s0009-2509(00)00108-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Jager, T., P. Santbulte i D. J. van Zuilichem. "Residence time distribution in kneading extruders". Journal of Food Engineering 24, nr 3 (styczeń 1995): 285–94. http://dx.doi.org/10.1016/0260-8774(95)90047-f.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Chen, Liqin, Zaoqi Pan i Guo-Hua Hu. "Residence time distribution in screw extruders". AIChE Journal 39, nr 9 (wrzesień 1993): 1455–64. http://dx.doi.org/10.1002/aic.690390905.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Hill, S. "Residence time distribution in continuous crystallisers". Journal of Applied Chemistry 20, nr 10 (4.05.2007): 300–304. http://dx.doi.org/10.1002/jctb.5010201001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Pattanaik, Biplab R., Ajay Gupta i Hariharan S. Shankar. "Residence Time Distribution Model for Soil Filters". Water Environment Research 76, nr 2 (marzec 2004): 168–74. http://dx.doi.org/10.2175/106143004x141708.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Berezhkovskii, Alexander M., Veaceslav Zaloj i Noam Agmon. "Residence time distribution of a Brownian particle". Physical Review E 57, nr 4 (1.04.1998): 3937–47. http://dx.doi.org/10.1103/physreve.57.3937.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Hsu, Jyh-Ping, i Tzu-Hsuan Wei. "Residence Time Distribution of a Cylindrical Microreactor". Journal of Physical Chemistry B 109, nr 18 (maj 2005): 9160–65. http://dx.doi.org/10.1021/jp044231u.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Durney, T. E., i T. P. Meloy. "Experimental proof: Residence time distribution in cascadography". International Journal of Mineral Processing 14, nr 4 (czerwiec 1985): 313–17. http://dx.doi.org/10.1016/0301-7516(85)90054-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Fan, L. T., J. R. Too i R. Nassar. "Stochastic simulation of residence time distribution curves". Chemical Engineering Science 40, nr 9 (1985): 1743–49. http://dx.doi.org/10.1016/0009-2509(85)80036-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Daud, W. R. B. W., i W. D. Armstrong. "Residence time distribution of the drum dryer". Chemical Engineering Science 43, nr 9 (1988): 2399–405. http://dx.doi.org/10.1016/0009-2509(88)85174-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Haas, Charles N., Josh Joffe, Mark S. Heath i Joseph Jacangelo. "Continuous Flow Residence Time Distribution Function Characterization". Journal of Environmental Engineering 123, nr 2 (luty 1997): 107–14. http://dx.doi.org/10.1061/(asce)0733-9372(1997)123:2(107).

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Rogovin, Z., Y. C. Lo, J. C. Herbst i K. Rajamani. "Closed grinding circuit residence time distribution analysis". Mining, Metallurgy & Exploration 4, nr 4 (listopad 1987): 207–14. http://dx.doi.org/10.1007/bf03402694.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Sancho, Martin F., i M. A. Rao. "Residence time distribution in a holding tube". Journal of Food Engineering 15, nr 1 (styczeń 1992): 1–19. http://dx.doi.org/10.1016/0260-8774(92)90037-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Fernández-Sempere, J., R. Font-Montesinos i O. Espejo-Alcaraz. "Residence time distribution for unsteady-state systems". Chemical Engineering Science 50, nr 2 (styczeń 1995): 223–30. http://dx.doi.org/10.1016/0009-2509(94)00230-o.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Wojewódka, Przemysław, Robert Aranowski i Christian Jungnickel. "Residence time distribution in rapid multiphase reactors". Journal of Industrial and Engineering Chemistry 69 (styczeń 2019): 370–78. http://dx.doi.org/10.1016/j.jiec.2018.09.037.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Renström, Roger. "Mean Residence Time and Residence Time Distribution When Sawdust Is Dried in Continuous Dryers". Drying Technology 26, nr 12 (21.11.2008): 1457–63. http://dx.doi.org/10.1080/07373930802412066.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Diaz, Francisco, i Juan Yianatos. "Residence time distribution in large industrial flotation cells". Atoms for Peace: an International Journal 3, nr 1 (2010): 2. http://dx.doi.org/10.1504/afp.2010.031015.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Baranyai, L., i A. Doma. "Residence Time Distribution Studies on Water-Softening Reactors". Isotopenpraxis Isotopes in Environmental and Health Studies 25, nr 8 (styczeń 1989): 341–43. http://dx.doi.org/10.1080/10256018908624147.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Yianatos, J., L. Bergh, L. Vinnett i F. Díaz. "Modeling of residence time distribution in regrinding Vertimill". Minerals Engineering 53 (listopad 2013): 174–80. http://dx.doi.org/10.1016/j.mineng.2013.08.006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Vikhansky, A. "Numerical analysis of residence time distribution in microchannels". Chemical Engineering Research and Design 89, nr 3 (marzec 2011): 347–51. http://dx.doi.org/10.1016/j.cherd.2010.06.010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Iroba, K. L., F. Weigler, J. Mellmann, T. Metzger i E. Tsotsas. "Residence Time Distribution in Mixed-Flow Grain Dryers". Drying Technology 29, nr 11 (11.07.2011): 1252–66. http://dx.doi.org/10.1080/07373937.2011.591711.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Patwardhan, Ashwin W. "Prediction of Residence Time Distribution of Stirred Reactors". Industrial & Engineering Chemistry Research 40, nr 24 (listopad 2001): 5686–95. http://dx.doi.org/10.1021/ie0103198.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Cvengroš, Ján, Viktor Badin i Štefan Pollák. "Residence time distribution in a wiped liquid film". Chemical Engineering Journal and the Biochemical Engineering Journal 59, nr 3 (listopad 1995): 259–63. http://dx.doi.org/10.1016/0923-0467(94)02960-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Cantu-Perez, Alberto, Shuang Bi, Simon Barrass, Mark Wood i Asterios Gavriilidis. "Residence time distribution studies in microstructured plate reactors". Applied Thermal Engineering 31, nr 5 (kwiecień 2011): 634–39. http://dx.doi.org/10.1016/j.applthermaleng.2010.04.024.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Trachsel, Franz, Axel Günther, Saif Khan i Klavs F. Jensen. "Measurement of residence time distribution in microfluidic systems". Chemical Engineering Science 60, nr 21 (listopad 2005): 5729–37. http://dx.doi.org/10.1016/j.ces.2005.04.039.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

BOSKOVIC, D., i S. LOEBBECKE. "Modelling of the residence time distribution in micromixers". Chemical Engineering Journal 135 (15.01.2008): S138—S146. http://dx.doi.org/10.1016/j.cej.2007.07.058.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Haitjema, H. M. "On the residence time distribution in idealized groundwatersheds". Journal of Hydrology 172, nr 1-4 (listopad 1995): 127–46. http://dx.doi.org/10.1016/0022-1694(95)02732-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Gao, Yijie, Aditya Vanarase, Fernando Muzzio i Marianthi Ierapetritou. "Characterizing continuous powder mixing using residence time distribution". Chemical Engineering Science 66, nr 3 (luty 2011): 417–25. http://dx.doi.org/10.1016/j.ces.2010.10.045.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Patrick, Robert H., Theresa Klindera, Lawrence L. Crynes, Ramon L. Cerro i Martin A. Abraham. "Residence time distribution in three-phase monolith reactor". AIChE Journal 41, nr 3 (marzec 1995): 649–57. http://dx.doi.org/10.1002/aic.690410321.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Gao, Jun, Gregory C. Walsh, David Bigio, Robert M. Briber i Mark D. Wetzel. "Residence-time distribution model for twin-screw extruders". AIChE Journal 45, nr 12 (grudzień 1999): 2541–49. http://dx.doi.org/10.1002/aic.690451210.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Dong, Zhengya, Shuainan Zhao, Yuchao Zhang, Chaoqun Yao, Quan Yuan i Guangwen Chen. "Mixing and residence time distribution in ultrasonic microreactors". AIChE Journal 63, nr 4 (23.09.2016): 1404–18. http://dx.doi.org/10.1002/aic.15493.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Bošković, D., S. Loebbecke, G. A. Gross i J. M. Koehler. "Residence Time Distribution Studies in Microfluidic Mixing Structures". Chemical Engineering & Technology 34, nr 3 (25.02.2011): 361–70. http://dx.doi.org/10.1002/ceat.201000352.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Goodall, C. M., i C. T. O'Connor. "Residence time distribution studies in a flotation column. Part 2: the relationship between solids residence time distribution and metallurgical performance". International Journal of Mineral Processing 36, nr 3-4 (październik 1992): 219–28. http://dx.doi.org/10.1016/0301-7516(92)90045-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Li, Liang Chao. "CFD Simulation of Gas Residence Time Distribution in Agitated Tank". Advanced Materials Research 732-733 (sierpień 2013): 467–71. http://dx.doi.org/10.4028/www.scientific.net/amr.732-733.467.

Pełny tekst źródła
Streszczenie:
Gas residence time is an important parameter for gas-liquid agitated tank. Two approaches, i.e., Euler-Tracer method and CFD-DPM method are proposed for predicting gas residence time distribution (RTD) in an aerated agitated tank by using a Fluent 6.2 software package. The simulation results show that the characteristic of the gas-RTD is a curve with single peak and long tailing. Bubble size, stirring speed and gas inlet flow rate have great effect on gas-RTD in the stirred tank. Small bubbles have wider residence time distribution and stay in the vessel longer than the large bubbles and tend to complete mixing. With increasing of impeller speed or decreasing of gas inlet rate, gas-RTD become wider and have longer average gas residence time, which is in favor of gas effectively utilization.
Style APA, Harvard, Vancouver, ISO itp.
40

El_Tokhy, Mohamed S., Ibrahim M. Fayed, Mouldi A. Bedda i H. Kasban. "Dead Time Correction of Residence Time Distribution through Digital Signal Processing". i-manager's Journal on Digital Signal Processing 3, nr 4 (15.12.2015): 1–8. http://dx.doi.org/10.26634/jdp.3.4.3705.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Liem, L. E., S. J. Stanley i Daniel W. Smith. "Residence time distribution analysis as related to the effective contact time". Canadian Journal of Civil Engineering 26, nr 2 (1.04.1999): 135–44. http://dx.doi.org/10.1139/l98-051.

Pełny tekst źródła
Streszczenie:
Sixteen full-scale tracer studies were completed at two water treatment plants to assess disinfection performance under the concentration-time (CT) concept. The step residence time distribution (F RTD) was developed for each case. The value of the effective contact time, t10, in the CT concept was then obtained. For reservoirs without baffles, the t10 values were found to be much smaller than the expected values, indicating poor performance under the CT concept. Several models were used to interpret the F RTD characteristics, but the results were unsatisfactory. The standard jet model was then applied and was able to match the field data F RTD curve up to the relative concentration c/co [Formula: see text] 0.2. This showed that the momentum causing jet was responsible for the rapid movement of water through the system causing small t10 values. The work shows the importance of the momentum causing jet in reservoirs, and that in addition to traditional criteria it should be considered in the evaluation of water treatment component design. Other models that are commonly used to predict the t10 value should be applied carefully as a result of this jet effect.Key words: tracer study, F RTD, t10, CT concept, jet, water treatment component design.
Style APA, Harvard, Vancouver, ISO itp.
42

Baker, Alastair, Alex Fells, Thomas Shaw, Chris J. Maher i Bruce C. Hanson. "Effect of Scale-Up on Residence Time and Uranium Extraction on Annular Centrifugal Contactors (ACCs)". Separations 10, nr 6 (26.05.2023): 331. http://dx.doi.org/10.3390/separations10060331.

Pełny tekst źródła
Streszczenie:
This work reports the effect of scaling up annular centrifugal contactors (ACCs) upon the residence time distribution and the efficiency of extraction of uranium. The experiments were carried out in a multi-scale ACC platform of three ACCs with rotor diameters of 12, 25, and 40 mm. To enable direct comparison across all three scales of ACC, the residence time distributions were acquired by injecting dye into the solvent phase at a constant relative volume related to the ACC liquid holdup. Across all scales and flowrates, there was little difference in residence time distribution (<6 residence volumes), except for the smallest 12 mm rotor diameter ACC with a high solvent/aqueous feed ratio, which required 12 residence volumes, potentially due to internal circulation in the annulus. At low flowrates, the stage efficiency in all cases was >95%, and it improved further in larger rotor diameter ACCs.
Style APA, Harvard, Vancouver, ISO itp.
43

Tinker, Sarah C., Christine L. Moe, Mitchel Klein, W. Dana Flanders, Jim Uber, Appiah Amirtharajah, Philip Singer i Paige E. Tolbert. "Drinking water residence time in distribution networks and emergency department visits for gastrointestinal illness in Metro Atlanta, Georgia". Journal of Water and Health 7, nr 2 (1.02.2009): 332–43. http://dx.doi.org/10.2166/wh.2009.022.

Pełny tekst źródła
Streszczenie:
We examined whether the average water residence time, the time it takes water to travel from the treatment plant to the user, for a zip code was related to the proportion of emergency department (ED) visits for gastrointestinal (GI) illness among residents of that zip code. Individual-level ED data were collected from all hospitals located in the five-county metro Atlanta area from 1993 to 2004. Two of the largest water utilities in the area, together serving 1.7 million people, were considered. People served by these utilities had almost 3 million total ED visits, 164,937 of them for GI illness. The relationship between water residence time and risk for GI illness was assessed using logistic regression, controlling for potential confounding factors, including patient age and markers of socioeconomic status (SES). We observed a modestly increased risk for GI illness for residents of zip codes with the longest water residence times compared with intermediate residence times (odds ratio (OR) for Utility 1 = 1.07, 95% confidence interval (CI)=1.03, 1.10; OR for Utility 2 = 1.05, 95% CI = 1.02, 1.08). The results suggest that drinking water contamination in the distribution system may contribute to the burden of endemic GI illness.
Style APA, Harvard, Vancouver, ISO itp.
44

Canevarolo, S. V., T. J. A. Mélo, J. A. Covas i O. S. Carneiro. "Direct Method for Deconvoluting Two Residence Time Distribution Curves". International Polymer Processing 16, nr 4 (1.08.2001): 334–40. http://dx.doi.org/10.1515/ipp-2001-0004.

Pełny tekst źródła
Streszczenie:
Abstract A pair of related Residence Time Distribution (RTD) curves obtained experimentally during extrusion, are deconvoluted using a methodology based on the concept of equivalent residence times. Two points of two RTD curves are equivalent when the same percentage of tracer has exited the system. The time scale of the deconvoluted curve is obtained by subtracting the two equivalent time values of the available RTD curves. The method was tested using simulated pulse-shaped RTD curves and also carrying out measurements on a twin screw extruder. Despite the experimental errors involved, the two tests seem to demonstrate the usefulness of the approach.
Style APA, Harvard, Vancouver, ISO itp.
45

GRETE, PATRICK, i MARIO MARKUS. "RESIDENCE TIME DISTRIBUTIONS FOR DOUBLE-SCROLL ATTRACTORS". International Journal of Bifurcation and Chaos 17, nr 03 (marzec 2007): 1007–15. http://dx.doi.org/10.1142/s0218127407017720.

Pełny tekst źródła
Streszczenie:
We investigated a choice of prototypical double-scroll attractors, namely trajectories resulting from Lorenz equations and from two sets of equations related to Chua's circuits. We found that the probability distribution for the residence times within a given scroll consists of prominent, exponentially decaying peaks. Similar peaks had been reported for stochastically resonant systems, which are driven periodically; however, in view of our results in autonomous systems, the appearance of such peaks has a higher degree of generality. In the systems we investigated, each peak corresponds to a subset of the attractor having a particular number of loops. Moreover, the sets of initial conditions leading to different peaks are interleaved in an analogous way as riddled or intermingled basins of attraction.
Style APA, Harvard, Vancouver, ISO itp.
46

Newell, Bob, Jeff Bailey, Ashraful Islam, Lisa Hopkins i Paul Lant. "Characterising bioreactor mixing with residence time distribution (RTD) tests". Water Science and Technology 37, nr 12 (1.06.1998): 43–47. http://dx.doi.org/10.2166/wst.1998.0495.

Pełny tekst źródła
Streszczenie:
This paper presents a technique for configuring wastewater process simulations so that the hydraulic characteristics are similar to the real plant. Residence time distribution (RTD) tests are performed on two biological nutrient removal pilot plants. The RTD tests proved valuable for evaluating mixing effectiveness, volume utilisation and for determining an appropriate hydraulic topology for the dynamic models of the pilot plants. As a result of this work, simulation execution times became much faster due to a significant reduction in the number of effective stirred tanks required in the model. The work also identified short circuiting and dead zones in the pilot plants.
Style APA, Harvard, Vancouver, ISO itp.
47

Canevarolo, S. V., T. J. A. Mélo, J. A. Cavas i O. S. Carneiro. "Direct Method for Deconvolving Two Residence Time Distribution Curves". International Polymer Processing 16, nr 4 (grudzień 2001): 334–40. http://dx.doi.org/10.3139/217.1660.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Coblyn, Matthew, Agnieszka Truszkowska i Goran Jovanovic. "Characterization of microchannel hemodialyzers using residence time distribution analysis". Journal of Flow Chemistry 6, nr 1 (marzec 2016): 53–61. http://dx.doi.org/10.1556/1846.2015.00041.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

BRUCATO, A., V. BRUCATO i L. RIZZUTI. "RESIDENCE TIME DISTRIBUTION OF SOLID PARTICLES IN STIRRED VESSELS". Chemical Engineering Communications 115, nr 1 (kwiecień 1992): 161–81. http://dx.doi.org/10.1080/00986449208936035.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Israeli, Miron, i Christopher B. Nelson. "Distribution and Expected Time of Residence for U.S. Households". Risk Analysis 12, nr 1 (marzec 1992): 65–72. http://dx.doi.org/10.1111/j.1539-6924.1992.tb01308.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii