Gotowa bibliografia na temat „Réseaux de neurones en graphes”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Réseaux de neurones en graphes”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Réseaux de neurones en graphes"
Lemieux, Vincent. "L'articulation des réseaux sociaux". Recherches sociographiques 17, nr 2 (12.04.2005): 247–60. http://dx.doi.org/10.7202/055716ar.
Pełny tekst źródłaDíaz Villalba, Alejandro. "Comment outiller l’étude des autorités avec l’analyse de réseaux dans les grammaires françaises des XVIe et XVIIe siècles". SHS Web of Conferences 138 (2022): 03003. http://dx.doi.org/10.1051/shsconf/202213803003.
Pełny tekst źródła-BORNE, Pierre. "Les réseaux de neurones." Revue de l'Electricité et de l'Electronique -, nr 08 (2006): 31. http://dx.doi.org/10.3845/ree.2006.074.
Pełny tekst źródła-BORNE, Pierre. "Les réseaux de neurones." Revue de l'Electricité et de l'Electronique -, nr 08 (2006): 37. http://dx.doi.org/10.3845/ree.2006.075.
Pełny tekst źródła-Y. HAGGEGE, Joseph. "Les réseaux de neurones". Revue de l'Electricité et de l'Electronique -, nr 08 (2006): 43. http://dx.doi.org/10.3845/ree.2006.076.
Pełny tekst źródła-BENREJEB, Mohamed. "Les réseaux de neurones." Revue de l'Electricité et de l'Electronique -, nr 08 (2006): 47. http://dx.doi.org/10.3845/ree.2006.077.
Pełny tekst źródła-Y. HAGGEGE, Joseph. "Les réseaux de neurones." Revue de l'Electricité et de l'Electronique -, nr 08 (2006): 50. http://dx.doi.org/10.3845/ree.2006.078.
Pełny tekst źródła-BENREJEB, Mohamed. "Les réseaux de neurones." Revue de l'Electricité et de l'Electronique -, nr 08 (2006): 55. http://dx.doi.org/10.3845/ree.2006.079.
Pełny tekst źródłaDalud-Vincent, Monique. "Une autre manière de modéliser les réseaux sociaux. Applications à l’étude de co-publications". Nouvelles perspectives en sciences sociales 12, nr 2 (22.08.2017): 41–68. http://dx.doi.org/10.7202/1040904ar.
Pełny tekst źródłaBélanger, M., N. El-Jabi, D. Caissie, F. Ashkar i J. M. Ribi. "Estimation de la température de l'eau de rivière en utilisant les réseaux de neurones et la régression linéaire multiple". Revue des sciences de l'eau 18, nr 3 (12.04.2005): 403–21. http://dx.doi.org/10.7202/705565ar.
Pełny tekst źródłaRozprawy doktorskie na temat "Réseaux de neurones en graphes"
Carboni, Lucrezia. "Graphes pour l’exploration des réseaux de neurones artificiels et de la connectivité cérébrale humaine". Electronic Thesis or Diss., Université Grenoble Alpes, 2023. http://www.theses.fr/2023GRALM060.
Pełny tekst źródłaThe main objective of this thesis is to explore brain and artificial neural network connectivity from agraph-based perspective. While structural and functional connectivity analysis has been extensivelystudied in the context of the human brain, there is a lack of a similar analysis framework in artificialsystems.To address this gap, this research focuses on two main axes.In the first axis, the main objective is to determine a healthy signature characterization of the humanbrain resting state functional connectivity. To achieve this objective, a novel framework is proposed,integrating traditional graph statistics and network reduction tools, to determine healthy connectivitypatterns. Hence, we build a graph pair-wise comparison and a classifier to identify pathological statesand rank associated perturbed brain regions. Additionally, the generalization and robustness of theproposed framework were investigated across multiple datasets and variations in data quality.The second research axis explores the benefits of brain-inspired connectivity exploration of artificialneural networks (ANNs) in the future perspective of more robust artificial systems development. Amajor robustness issue in ANN models is represented by catastrophic forgetting when the networkdramatically forgets previously learned tasks when adapting to new ones. Our work demonstrates thatgraph modeling offers a simple and elegant framework for investigating ANNs, comparing differentlearning strategies, and detecting deleterious behaviors such as catastrophic forgetting.Moreover, we explore the potential of leveraging graph-based insights to effectively mitigatecatastrophic forgetting, laying a foundation for future research and explorations in this area
Albano, Alice. "Dynamique des graphes de terrain : analyse en temps intrinsèque". Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066260/document.
Pełny tekst źródłaWe are surrounded by a multitude of interaction networks from different contexts. These networks can be modeled as graphs, called complex networks. They have a community structure, i.e. groups of nodes closely related to each other and less connected with the rest of the graph. An other phenomenon studied in complex networks in many contexts is diffusion. The spread of a disease is an example of diffusion. These phenomena are dynamic and depend on an important parameter, which is often little studied: the time scale in which they are observed. According to the chosen scale, the graph dynamics can vary significantly. In this thesis, we propose to study dynamic processes using a suitable time scale. We consider a notion of relative time which we call intrinsic time, opposed to "traditional" time, which we call extrinsic time. We first study diffusion phenomena using intrinsic time, and we compare our results with an extrinsic time scale. This allows us to highlight the fact that the same phenomenon observed at two different time scales can have a very different behavior. We then analyze the relevance of the use of intrinsic time scale for detecting dynamic communities. Comparing communities obtained according extrinsic and intrinsic scales shows that the intrinsic time scale allows a more significant detection than extrinsic time scale
Albano, Alice. "Dynamique des graphes de terrain : analyse en temps intrinsèque". Electronic Thesis or Diss., Paris 6, 2014. http://www.theses.fr/2014PA066260.
Pełny tekst źródłaWe are surrounded by a multitude of interaction networks from different contexts. These networks can be modeled as graphs, called complex networks. They have a community structure, i.e. groups of nodes closely related to each other and less connected with the rest of the graph. An other phenomenon studied in complex networks in many contexts is diffusion. The spread of a disease is an example of diffusion. These phenomena are dynamic and depend on an important parameter, which is often little studied: the time scale in which they are observed. According to the chosen scale, the graph dynamics can vary significantly. In this thesis, we propose to study dynamic processes using a suitable time scale. We consider a notion of relative time which we call intrinsic time, opposed to "traditional" time, which we call extrinsic time. We first study diffusion phenomena using intrinsic time, and we compare our results with an extrinsic time scale. This allows us to highlight the fact that the same phenomenon observed at two different time scales can have a very different behavior. We then analyze the relevance of the use of intrinsic time scale for detecting dynamic communities. Comparing communities obtained according extrinsic and intrinsic scales shows that the intrinsic time scale allows a more significant detection than extrinsic time scale
Hladiš, Matej. "Réseaux de neurones en graphes et modèle de langage des protéines pour révéler le code combinatoire de l'olfaction". Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ5024.
Pełny tekst źródłaMammals identify and interpret a myriad of olfactory stimuli using a complex coding mechanism involving interactions between odorant molecules and hundreds of olfactory receptors (ORs). These interactions generate unique combinations of activated receptors, called the combinatorial code, which the human brain interprets as the sensation we call smell. Until now, the vast number of possible receptor-molecule combinations have prevented a large-scale experimental study of this code and its link to odor perception. Therefore, revealing this code is crucial to answering the long-term question of how we perceive our intricate chemical environment. ORs belong to the class A of G protein-coupled receptors (GPCRs) and constitute the largest known multigene family. To systematically study olfactory coding, we develop M2OR, a comprehensive database compiling the last 25 years of OR bioassays. Using this dataset, a tailored deep learning model is designed and trained. It combines the [CLS] token embedding from a protein language model with graph neural networks and multi-head attention. This model predicts the activation of ORs by odorants and reveals the resulting combinatorial code for any odorous molecule. This approach is refined by developing a novel model capable of predicting the activity of an odorant at a specific concentration, subsequently allowing the estimation of the EC50 value for any OR-odorant pair. Finally, the combinatorial codes derived from both models are used to predict the odor perception of molecules. By incorporating inductive biases inspired by olfactory coding theory, a machine learning model based on these codes outperforms the current state-of-the-art in smell prediction. To the best of our knowledge, this is the most comprehensive and successful application of combinatorial coding to odor quality prediction. Overall, this work provides a link between the complex molecule-receptor interactions and human perception
Limnios, Stratis. "Graph Degeneracy Studies for Advanced Learning Methods on Graphs and Theoretical Results Edge degeneracy: Algorithmic and structural results Degeneracy Hierarchy Generator and Efficient Connectivity Degeneracy Algorithm A Degeneracy Framework for Graph Similarity Hcore-Init: Neural Network Initialization based on Graph Degeneracy". Thesis, Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAX038.
Pełny tekst źródłaExtracting Meaningful substructures from graphs has always been a key part in graph studies. In machine learning frameworks, supervised or unsupervised, as well as in theoretical graph analysis, finding dense subgraphs and specific decompositions is primordial in many social and biological applications among many others.In this thesis we aim at studying graph degeneracy, starting from a theoretical point of view, and building upon our results to find the most suited decompositions for the tasks at hand.Hence the first part of the thesis we work on structural results in graphs with bounded edge admissibility, proving that such graphs can be reconstructed by aggregating graphs with almost-bounded-edge-degree. We also provide computational complexity guarantees for the different degeneracy decompositions, i.e. if they are NP-complete or polynomial, depending on the length of the paths on which the given degeneracy is defined.In the second part we unify the degeneracy and admissibility frameworks based on degree and connectivity. Within those frameworks we pick the most expressive, on the one hand, and computationally efficient on the other hand, namely the 1-edge-connectivity degeneracy, to experiment on standard degeneracy tasks, such as finding influential spreaders.Following the previous results that proved to perform poorly we go back to using the k-core but plugging it in a supervised framework, i.e. graph kernels. Thus providing a general framework named core-kernel, we use the k-core decomposition as a preprocessing step for the kernel and apply the latter on every subgraph obtained by the decomposition for comparison. We are able to achieve state-of-the-art performance on graph classification for a small computational cost trade-off.Finally we design a novel degree degeneracy framework for hypergraphs and simultaneously on bipartite graphs as they are hypergraphs incidence graph. This decomposition is then applied directly to pretrained neural network architectures as they induce bipartite graphs and use the coreness of the neurons to re-initialize the neural network weights. This framework not only outperforms state-of-the-art initialization techniques but is also applicable to any pair of layers convolutional and linear thus being applicable however needed to any type of architecture
Hafidi, Hakim. "Robust machine learning for Graphs/Networks". Electronic Thesis or Diss., Institut polytechnique de Paris, 2023. http://www.theses.fr/2023IPPAT004.
Pełny tekst źródłaThis thesis addresses advancements in graph representation learning, focusing on the challengesand opportunities presented by Graph Neural Networks (GNNs). It highlights the significanceof graphs in representing complex systems and the necessity of learning node embeddings that capture both node features and graph structure. The study identifies key issues in GNNs, such as their dependence on high-quality labeled data, inconsistent performanceacross various datasets, and susceptibility to adversarial attacks.To tackle these challenges, the thesis introduces several innovative approaches. Firstly, it employs contrastive learning for node representation, enabling self-supervised learning that reduces reliance on labeled data. Secondly, a Bayesian-based classifier isproposed for node classification, which considers the graph’s structure to enhance accuracy. Lastly, the thesis addresses the vulnerability of GNNs to adversarialattacks by assessing the robustness of the proposed classifier and introducing effective defense mechanisms.These contributions aim to improve both the performance and resilience of GNNs in graph representation learning
Hérault, Laurent. "Réseaux de neurones récursifs pour l'optimisation combinatoire : application à la théorie des graphes et à la vision par ordinateur". Grenoble INPG, 1991. http://www.theses.fr/1991INPG0019.
Pełny tekst źródłaLachaud, Guillaume. "Extensions and Applications of Graph Neural Networks". Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS434.
Pełny tekst źródłaGraphs are used everywhere to represent interactions between entities, whether physical such as atoms, molecules or people, or more abstract such as cities, friendships, ideas, etc. Amongst all the methods of machine learning that can be used, the recent advances in deep learning have made graph neural networks the de facto standard for graph representation learning. This thesis can be divided in two parts. First, we review the theoretical underpinnings of the most powerful graph neural networks. Second, we explore the challenges faced by the existing models when training on real world graph data. The powerfulness of a graph neural network is defined in terms of its expressiveness, i.e., its ability to distinguish non isomorphic graphs; or, in an equivalent manner, its ability to approximate permutation invariant and equivariant functions. We distinguish two broad families of the most powerful models. We summarise the mathematical properties as well as the advantages and disadvantages of these models in practical situations. Apart from the choice of the architecture, the quality of the graph data plays a crucial role in the ability to learn useful representations. Several challenges are faced by graph neural networks given the intrinsic nature of graph data. In contrast to typical machine learning methods that deal with tabular data, graph neural networks need to consider not only the features of the nodes but also the interconnectedness between them. Due to the connections between nodes, training neural networks on graphs can be done in two settings: in transductive learning, the model can have access to the test features in the training phase; in the inductive setting, the test data remains unseen. We study the differences in terms of performance between inductive and transductive learning for the node classification task. Additionally, the features that are fed to a model can be noisy or even missing. In this thesis we evaluate these challenges on real world datasets, and we propose a novel architecture to perform missing data imputation on graphs. Finally, while graphs can be the natural way to describe interactions, other types of data can benefit from being converted into graphs. In this thesis, we perform preliminary work on how to extract the most important parts of skin lesion images that could be used to create graphs and learn hidden relations in the data
Pineau, Edouard. "Contributions to representation learning of multivariate time series and graphs". Electronic Thesis or Diss., Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAT037.
Pełny tekst źródłaMachine learning (ML) algorithms are designed to learn models that have the ability to take decisions or make predictions from data, in a large panel of tasks. In general, the learned models are statistical approximations of the true/optimal unknown decision models. The efficiency of a learning algorithm depends on an equilibrium between model richness, complexity of the data distribution and complexity of the task to solve from data. Nevertheless, for computational convenience, the statistical decision models often adopt simplifying assumptions about the data (e.g. linear separability, independence of the observed variables, etc.). However, when data distribution is complex (e.g. high-dimensional with nonlinear interactions between observed variables), the simplifying assumptions can be counterproductive. In this situation, a solution is to feed the model with an alternative representation of the data. The objective of data representation is to separate the relevant information with respect to the task to solve from the noise, in particular if the relevant information is hidden (latent), in order to help the statistical model. Until recently and the rise of modern ML, many standard representations consisted in an expert-based handcrafted preprocessing of data. Recently, a branch of ML called deep learning (DL) completely shifted the paradigm. DL uses neural networks (NNs), a family of powerful parametric functions, as learning data representation pipelines. These recent advances outperformed most of the handcrafted data in many domains.In this thesis, we are interested in learning representations of multivariate time series (MTS) and graphs. MTS and graphs are particular objects that do not directly match standard requirements of ML algorithms. They can have variable size and non-trivial alignment, such that comparing two MTS or two graphs with standard metrics is generally not relevant. Hence, particular representations are required for their analysis using ML approaches. The contributions of this thesis consist of practical and theoretical results presenting new MTS and graphs representation learning frameworks.Two MTS representation learning frameworks are dedicated to the ageing detection of mechanical systems. First, we propose a model-based MTS representation learning framework called Sequence-to-graph (Seq2Graph). Seq2Graph assumes that the data we observe has been generated by a model whose graphical representation is a causality graph. It then represents, using an appropriate neural network, the sample on this graph. From this representation, when it is appropriate, we can find interesting information about the state of the studied mechanical system. Second, we propose a generic trend detection method called Contrastive Trend Estimation (CTE). CTE learns to classify pairs of samples with respect to the monotony of the trend between them. We show that using this method, under few assumptions, we identify the true state underlying the studied mechanical system, up-to monotone scalar transform.Two graph representation learning frameworks are dedicated to the classification of graphs. First, we propose to see graphs as sequences of nodes and create a framework based on recurrent neural networks to represent and classify them. Second, we analyze a simple baseline feature for graph classification: the Laplacian spectrum. We show that this feature matches minimal requirements to classify graphs when all the meaningful information is contained in the structure of the graphs
Halal, Taha. "Graph-based learning and optimization". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASG043.
Pełny tekst źródłaGraphs are a fundamental data structure used to represent complex patterns in various domains. Graph Neural Networks (GNNs), a deep learning paradigm specifically designed for graph-structured data, offer a powerful deep learning solution for extracting insights from these intricate relationships. This thesis explores the application of GNNs to address two key challenges: maximizing influence in social networks and predicting missing links in knowledge graphs with limited data. With applications ranging from optimizing public health campaigns and combating misinformation to knowledge base completion, this research addresses the need for computationally efficient and robust methods in these domains. Influence maximization (IM) focuses on identifying the most influential nodes within a social network to maximize the spread of information or ideas. This thesis explores methods for tackling the IM problem, particularly in real-world scenarios with massive networks and diverse information themes. We build our models upon the S2V-DQN framework, a powerful approach that combines Deep Q-Networks (DQNs) for reinforcement learning with Structure2Vec (S2V) for graph embedding. We first develop our IM-GNN model that incorporates advanced GNN features such as graph attention mechanisms and positional encoding, demonstrating competitive performance against existing learning-based and non-learning based methods for influence maximization. We further extend our research to tackle Topic-aware Influence Maximization (TIM) where the spread of information is influenced by its thematic content, requiring models to consider not only network structure but also the topics of the messages being shared. This is where the limitations of traditional IM methods become apparent. Our TIM-GNN model effectively handles this complexity by incorporating topic-aware training and probabilistic methods for constructing topic-aware diffusion graphs. To address query latency concerns, we introduce TIM-GNNx, which integrates cross-attention mechanisms and a pre-computed Q-matrix. Our experiments on real-world datasets demonstrate that our proposed model achieves competitive performance in terms of influence spread compared to state-of-the-art methods while also offering significant improvements in query time latency and robustness to changes in the diffusion graph. Notably, our TIM-GNNx model strikes a balance between query efficiency and maximizing influence, making it particularly well-suited for real-time applications. In the realm of knowledge graphs, we explore Few-Shot Link Prediction (FSLP), where the goal is to predict missing relationships with limited training examples, which is crucial for addressing the long-tail phenomenon. In knowledge graphs, the long-tail phenomenon refers to the fact that a large number of entities (nodes) and relations (edges) have very few connections or occurrences. This results in a distribution where a small number of popular entities or relations have many connections, while the vast majority have very few. Our investigation focuses on the feasibility of integrating a path-based knowledge graph completion method PathCon with a meta-learning framework MetaR to address the limitations of the latter. While our initial investigations did not yield significant improvements or notable scientific contributions, they provided valuable insights into the challenges of this task and informed the development of a prototype, deployed as an API, for the AIDA project. This prototype demonstrates the practical value of our research and paves the way for future explorations in this area. Overall, this thesis contributes novel and efficient GNN-based solutions for influence maximization and explores promising directions for few-shot link prediction in knowledge graphs, pushing the boundaries of these research areas
Książki na temat "Réseaux de neurones en graphes"
Michel, Verleysen, red. Les réseaux de neurones artificiels. Paris: Presses universitaires de France, 1996.
Znajdź pełny tekst źródłaMathis, Philippe. Graphes et réseaux: Modélisation multiniveau. Paris: Hermès science publications, 2003.
Znajdź pełny tekst źródłaKamp, Yves. Réseaux de neurones récursifs pour mémoires associatives. Lausanne: Presses polytechniques et universitaires romandes, 1990.
Znajdź pełny tekst źródłaRollet, Guy. Les RÉSEAUX DE NEURONES DE LA CONSCIENCE - Approche multidisciplinaire du phénomène. Paris: Editions L'Harmattan, 2013.
Znajdź pełny tekst źródłaPersonnaz, L. Réseaux de neurones formels pour la modélisation, la commande et la classification. Paris: CNRS Editions, 2003.
Znajdź pełny tekst źródłaAmat, Jean-Louis. Techniques avancées pour le traitement de l'information: Réseaux de neurones, logique floue, algorithmes génétiques. Wyd. 2. Toulouse: Cépaduès-Ed., 2002.
Znajdź pełny tekst źródłaJournées d'électronique (1989 Lausanne, Switzerland). Réseaux de neurones artificiels: Comptes rendus des Journées d'électronique 1989, Lausanne, 10-12 october 1983. Lausanne: Presses polytechniques romande, 1989.
Znajdź pełny tekst źródłaAlmeida, Fernando Carvalho de. L'evaluation des risques de défaillance des entreprises à partir des réseaux de neurones insérés dans les systèmes d'aide à la décision. Grenoble: A.N.R.T, Université Pierre Mendes France (Grenoble II), 1993.
Znajdź pełny tekst źródłaUniversité de Paris X: Nanterre, red. L'avènement de la complexité dans la construction des apprentissages: Application à la pédagogie des recherches menées en informatique sur le chaos déterministe et les réseaux de neurones artificiels. Lille: A.N.R.T, Université de Lille III, 1996.
Znajdź pełny tekst źródłaSeidou, Ousmane. Modélisation de la croissance de glace de lac par réseaux de neurones artificiels et estimation du volume de la glace abandonnée sur les berges des réservoirs hydroélectriques pendant les opérations d'hiver. Québec, QC: INRS--ETE, 2005.
Znajdź pełny tekst źródłaCzęści książek na temat "Réseaux de neurones en graphes"
Martaj, Dr Nadia, i Dr Mohand Mokhtari. "Réseaux de neurones". W MATLAB R2009, SIMULINK et STATEFLOW pour Ingénieurs, Chercheurs et Etudiants, 807–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11764-0_17.
Pełny tekst źródłaBretto, Alain, Alain Faisant i François Hennecart. "Connexité et flots dans les réseaux". W Éléments de théorie des graphes, 99–129. Paris: Springer Paris, 2012. http://dx.doi.org/10.1007/978-2-8178-0281-7_4.
Pełny tekst źródłaGolumbic, Martin Charles, i André Sainte-Laguë. "Tracing the topics in Les Réseaux (ou Graphes)". W The Zeroth Book of Graph Theory, 1–5. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-61420-1_1.
Pełny tekst źródłaKipnis, C., i E. Saada. "Un lien entre réseaux de neurones et systèmes de particules: Un modele de rétinotopie". W Lecture Notes in Mathematics, 55–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0094641.
Pełny tekst źródłaLe Blanc, Benoît. "Réseaux informatiques et modèle des graphes petits-mondes". W Les réseaux, 91–100. CNRS Éditions, 2012. http://dx.doi.org/10.4000/books.editionscnrs.19279.
Pełny tekst źródłaGUYOMAR, Cervin, i Claire LEMAITRE. "Métagénomique et métatranscriptomique". W Des séquences aux graphes, 151–86. ISTE Group, 2023. http://dx.doi.org/10.51926/iste.9066.ch5.
Pełny tekst źródła"2. RÉSEAUX ET GRAPHES: VOCABULAIRE ET EXEMPLES". W Le vagabond stoïque, 52–100. Les Presses de l’Université de Montréal, 2004. http://dx.doi.org/10.1515/9782760624696-003.
Pełny tekst źródła"4. Les réseaux de neurones artificiels". W L'intelligence artificielle, 91–112. EDP Sciences, 2021. http://dx.doi.org/10.1051/978-2-7598-2580-6.c006.
Pełny tekst źródłaMOLINIER, Matthieu, Jukka MIETTINEN, Dino IENCO, Shi QIU i Zhe ZHU. "Analyse de séries chronologiques d’images satellitaires optiques pour des applications environnementales". W Détection de changements et analyse des séries temporelles d’images 2, 125–74. ISTE Group, 2024. http://dx.doi.org/10.51926/iste.9057.ch4.
Pełny tekst źródłaBYTYN, Andreas, René AHLSDORF i Gerd ASCHEID. "Systèmes multiprocesseurs basés sur un ASIP pour l’efficacité des CNN". W Systèmes multiprocesseurs sur puce 1, 93–111. ISTE Group, 2023. http://dx.doi.org/10.51926/iste.9021.ch4.
Pełny tekst źródłaStreszczenia konferencji na temat "Réseaux de neurones en graphes"
Fourcade, A. "Apprentissage profond : un troisième oeil pour les praticiens". W 66ème Congrès de la SFCO. Les Ulis, France: EDP Sciences, 2020. http://dx.doi.org/10.1051/sfco/20206601014.
Pełny tekst źródłaGresse, Adrien, Richard Dufour, Vincent Labatut, Mickael Rouvier i Jean-François Bonastre. "Mesure de similarité fondée sur des réseaux de neurones siamois pour le doublage de voix". W XXXIIe Journées d’Études sur la Parole. ISCA: ISCA, 2018. http://dx.doi.org/10.21437/jep.2018-2.
Pełny tekst źródłaSENECHAL, Nadia, i Giovanni COCO. "Dynamique du trait de côte : approche par réseaux de neurones sur différentes bases de données". W Journées Nationales Génie Cotier - Genie Civil, 963–70. Editions Paralia, 2024. http://dx.doi.org/10.5150/jngcgc.2024.099.
Pełny tekst źródłaORLIANGES, Jean-Christophe, Younes El Moustakime, Aurelian Crunteanu STANESCU, Ricardo Carrizales Juarez i Oihan Allegret. "Retour vers le perceptron - fabrication d’un neurone synthétique à base de composants électroniques analogiques simples". W Les journées de l'interdisciplinarité 2023. Limoges: Université de Limoges, 2024. http://dx.doi.org/10.25965/lji.761.
Pełny tekst źródłaWalid, Tazarki, Fareh Riadh i Chichti Jameleddine. "La Prevision Des Crises Bancaires: Un essai de modélisation par la méthode des réseaux de neurones [Not available in English]". W International Conference on Information and Communication Technologies from Theory to Applications - ICTTA'08. IEEE, 2008. http://dx.doi.org/10.1109/ictta.2008.4529985.
Pełny tekst źródłaKim, Lila, i Cédric Gendrot. "Classification automatique de voyelles nasales pour une caractérisation de la qualité de voix des locuteurs par des réseaux de neurones convolutifs". W XXXIVe Journées d'Études sur la Parole -- JEP 2022. ISCA: ISCA, 2022. http://dx.doi.org/10.21437/jep.2022-82.
Pełny tekst źródłaGendrot, Cedric, Emmanuel Ferragne i Anaïs Chanclu. "Analyse phonétique de la variation inter-locuteurs au moyen de réseaux de neurones convolutifs : voyelles seules et séquences courtes de parole". W XXXIVe Journées d'Études sur la Parole -- JEP 2022. ISCA: ISCA, 2022. http://dx.doi.org/10.21437/jep.2022-94.
Pełny tekst źródłaQuintas, Sebastião, Alberto Abad, Julie Mauclair, Virginie Woisard i Julien Pinquier. "Utilisation de réseaux de neurones profonds avec attention pour la prédiction de l’intelligibilité de la parole de patients atteints de cancers ORL". W XXXIVe Journées d'Études sur la Parole -- JEP 2022. ISCA: ISCA, 2022. http://dx.doi.org/10.21437/jep.2022-7.
Pełny tekst źródła