Artykuły w czasopismach na temat „Repeat instabilty”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Repeat instabilty”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Khristich, Alexandra N., i Sergei M. Mirkin. "On the wrong DNA track: Molecular mechanisms of repeat-mediated genome instability". Journal of Biological Chemistry 295, nr 13 (14.02.2020): 4134–70. http://dx.doi.org/10.1074/jbc.rev119.007678.
Pełny tekst źródłaLin, Yunfu, i John H. Wilson. "Transcription-Induced CAG Repeat Contraction in Human Cells Is Mediated in Part by Transcription-Coupled Nucleotide Excision Repair". Molecular and Cellular Biology 27, nr 17 (25.06.2007): 6209–17. http://dx.doi.org/10.1128/mcb.00739-07.
Pełny tekst źródłaCohen, Haim, Dorothy D. Sears, Drora Zenvirth, Philip Hieter i Giora Simchen. "Increased Instability of Human CTG Repeat Tracts on Yeast Artificial Chromosomes during Gametogenesis". Molecular and Cellular Biology 19, nr 6 (1.06.1999): 4153–58. http://dx.doi.org/10.1128/mcb.19.6.4153.
Pełny tekst źródłaBrouwer, Judith Rixt, Aline Huguet, Annie Nicole, Arnold Munnich i Geneviève Gourdon. "Transcriptionally Repressive Chromatin Remodelling and CpG Methylation in the Presence of Expanded CTG-Repeats at the DM1 Locus". Journal of Nucleic Acids 2013 (2013): 1–16. http://dx.doi.org/10.1155/2013/567435.
Pełny tekst źródłaGold, Michaela A., Jenna M. Whalen, Karine Freon, Zixin Hong, Ismail Iraqui, Sarah A. E. Lambert i Catherine H. Freudenreich. "Restarted replication forks are error-prone and cause CAG repeat expansions and contractions". PLOS Genetics 17, nr 10 (21.10.2021): e1009863. http://dx.doi.org/10.1371/journal.pgen.1009863.
Pełny tekst źródłaNeil, Alexander J., Julia A. Hisey, Ishtiaque Quasem, Ryan J. McGinty, Marcin Hitczenko, Alexandra N. Khristich i Sergei M. Mirkin. "Replication-independent instability of Friedreich’s ataxia GAA repeats during chronological aging". Proceedings of the National Academy of Sciences 118, nr 5 (25.01.2021): e2013080118. http://dx.doi.org/10.1073/pnas.2013080118.
Pełny tekst źródłaCalluori, Stephanie, Rebecca Stark i Brandon L. Pearson. "Gene–Environment Interactions in Repeat Expansion Diseases: Mechanisms of Environmentally Induced Repeat Instability". Biomedicines 11, nr 2 (10.02.2023): 515. http://dx.doi.org/10.3390/biomedicines11020515.
Pełny tekst źródłaGorbunova, Vera, Andrei Seluanov, Vincent Dion, Zoltan Sandor, James L. Meservy i John H. Wilson. "Selectable System for Monitoring the Instability of CTG/CAG Triplet Repeats in Mammalian Cells". Molecular and Cellular Biology 23, nr 13 (1.07.2003): 4485–93. http://dx.doi.org/10.1128/mcb.23.13.4485-4493.2003.
Pełny tekst źródłaJung, Da Eun, i Chul Hyoung Lyoo. "A Spinocerebellar Ataxia Type 6 Patient Caused by <i>De Novo</i> Expansion of Normal Range CAG Repeats". Journal of the Korean Neurological Association 42, nr 2 (1.05.2024): 150–52. http://dx.doi.org/10.17340/jkna.2023.0105.
Pełny tekst źródłaSu, Xiaofeng A., i Catherine H. Freudenreich. "Cytosine deamination and base excision repair cause R-loop–induced CAG repeat fragility and instability in Saccharomyces cerevisiae". Proceedings of the National Academy of Sciences 114, nr 40 (18.09.2017): E8392—E8401. http://dx.doi.org/10.1073/pnas.1711283114.
Pełny tekst źródłaGordenin, D. A., K. S. Lobachev, N. P. Degtyareva, A. L. Malkova, E. Perkins i M. A. Resnick. "Inverted DNA repeats: a source of eukaryotic genomic instability". Molecular and Cellular Biology 13, nr 9 (wrzesień 1993): 5315–22. http://dx.doi.org/10.1128/mcb.13.9.5315-5322.1993.
Pełny tekst źródłaGordenin, D. A., K. S. Lobachev, N. P. Degtyareva, A. L. Malkova, E. Perkins i M. A. Resnick. "Inverted DNA repeats: a source of eukaryotic genomic instability." Molecular and Cellular Biology 13, nr 9 (wrzesień 1993): 5315–22. http://dx.doi.org/10.1128/mcb.13.9.5315.
Pełny tekst źródłaRuiz Buendía, Gustavo A., Marion Leleu, Flavia Marzetta, Ludovica Vanzan, Jennifer Y. Tan, Victor Ythier, Emma L. Randall i in. "Three-dimensional chromatin interactions remain stable upon CAG/CTG repeat expansion". Science Advances 6, nr 27 (lipiec 2020): eaaz4012. http://dx.doi.org/10.1126/sciadv.aaz4012.
Pełny tekst źródłaMiret, J. J., L. Pessoa-Brandão i R. S. Lahue. "Instability of CAG and CTG trinucleotide repeats in Saccharomyces cerevisiae." Molecular and Cellular Biology 17, nr 6 (czerwiec 1997): 3382–87. http://dx.doi.org/10.1128/mcb.17.6.3382.
Pełny tekst źródłaCho, In K., Faye Clever, Gordon Hong i Anthony W. S. Chan. "CAG Repeat Instability in the Peripheral and Central Nervous System of Transgenic Huntington’s Disease Monkeys". Biomedicines 10, nr 8 (2.08.2022): 1863. http://dx.doi.org/10.3390/biomedicines10081863.
Pełny tekst źródłaBhattacharyya, Saumitri, Michael L. Rolfsmeier, Michael J. Dixon, Kara Wagoner i Robert S. Lahue. "Identification of RTG2 as a Modifier Gene for CTG·CAG Repeat Instability in Saccharomyces cerevisiae". Genetics 162, nr 2 (1.10.2002): 579–89. http://dx.doi.org/10.1093/genetics/162.2.579.
Pełny tekst źródłaPersi, Erez, Davide Prandi, Yuri I. Wolf, Yair Pozniak, Georgina D. Barnabas, Keren Levanon, Iris Barshack i in. "Proteomic and genomic signatures of repeat instability in cancer and adjacent normal tissues". Proceedings of the National Academy of Sciences 116, nr 34 (6.08.2019): 16987–96. http://dx.doi.org/10.1073/pnas.1908790116.
Pełny tekst źródłaCurrey, Nicola, Joseph J. Daniel, Dessislava N. Mladenova, Jane E. Dahlstrom i Maija R. J. Kohonen-Corish. "Microsatellite Instability in Mouse Models of Colorectal Cancer". Canadian Journal of Gastroenterology and Hepatology 2018 (2018): 1–7. http://dx.doi.org/10.1155/2018/6152928.
Pełny tekst źródłaChatterjee, Nimrat, Yunfu Lin, Beatriz A. Santillan, Patricia Yotnda i John H. Wilson. "Environmental stress induces trinucleotide repeat mutagenesis in human cells". Proceedings of the National Academy of Sciences 112, nr 12 (9.03.2015): 3764–69. http://dx.doi.org/10.1073/pnas.1421917112.
Pełny tekst źródłaHigham, Catherine F., i Darren G. Monckton. "Modelling and inference reveal nonlinear length-dependent suppression of somatic instability for small disease associated alleles in myotonic dystrophy type 1 and Huntington disease". Journal of The Royal Society Interface 10, nr 88 (6.11.2013): 20130605. http://dx.doi.org/10.1098/rsif.2013.0605.
Pełny tekst źródłaLai, Yanhao, Nicole Diaz, Rhyisa Armbrister, Irina Agoulnik i Yuan Liu. "DNA Base Damage Repair Crosstalks with Chromatin Structures to Contract Expanded GAA Repeats in Friedreich’s Ataxia". Biomolecules 14, nr 7 (8.07.2024): 809. http://dx.doi.org/10.3390/biom14070809.
Pełny tekst źródłaLoupe, Jacob M., Ricardo Mouro Pinto, Kyung-Hee Kim, Tammy Gillis, Jayalakshmi S. Mysore, Marissa A. Andrew, Marina Kovalenko i in. "Promotion of somatic CAG repeat expansion by Fan1 knock-out in Huntington’s disease knock-in mice is blocked by Mlh1 knock-out". Human Molecular Genetics 29, nr 18 (2.09.2020): 3044–53. http://dx.doi.org/10.1093/hmg/ddaa196.
Pełny tekst źródłaMaurer, D. J., B. L. O'Callaghan i D. M. Livingston. "Orientation dependence of trinucleotide CAG repeat instability in Saccharomyces cerevisiae." Molecular and Cellular Biology 16, nr 12 (grudzień 1996): 6617–22. http://dx.doi.org/10.1128/mcb.16.12.6617.
Pełny tekst źródłaGrishchenko, I. V., A. A. Tulupov, Y. M. Rymareva, E. D. Petrovskiy, A. A. Savelov, A. M. Korostyshevskaya, Y. V. Maksimova, A. R. Shorina, E. M. Shitik i D. V. Yudkin. "A transgenic cell line with inducible transcription for studying (CGG)n repeat expansion mechanisms". Vavilov Journal of Genetics and Breeding 25, nr 1 (16.03.2021): 117–24. http://dx.doi.org/10.18699/vj21.014.
Pełny tekst źródłaHayward, Bruce E., i Karen Usdin. "Mechanisms of Genome Instability in the Fragile X-Related Disorders". Genes 12, nr 10 (17.10.2021): 1633. http://dx.doi.org/10.3390/genes12101633.
Pełny tekst źródłaLiao, Xingyu, Kang Hu, Adil Salhi, You Zou, Jianxin Wang i Xin Gao. "msRepDB: a comprehensive repetitive sequence database of over 80 000 species". Nucleic Acids Research 50, nr D1 (1.12.2021): D236—D245. http://dx.doi.org/10.1093/nar/gkab1089.
Pełny tekst źródłaSpiro, Craig, i Cynthia T. McMurray. "Nuclease-Deficient FEN-1 Blocks Rad51/BRCA1-Mediated Repair and Causes Trinucleotide Repeat Instability". Molecular and Cellular Biology 23, nr 17 (1.09.2003): 6063–74. http://dx.doi.org/10.1128/mcb.23.17.6063-6074.2003.
Pełny tekst źródłaRadvanszky, Jan, Michaela Hyblova, Eva Radvanska, Peter Spalek, Alica Valachova, Gabriela Magyarova, Csaba Bognar, Emil Polak, Tomas Szemes i Ludevit Kadasi. "Characterisation of Non-Pathogenic Premutation-Range Myotonic Dystrophy Type 2 Alleles". Journal of Clinical Medicine 10, nr 17 (31.08.2021): 3934. http://dx.doi.org/10.3390/jcm10173934.
Pełny tekst źródłaSmirnov, Evgeny, Nikola Chmúrčiaková, František Liška, Pavla Bažantová i Dušan Cmarko. "Variability of Human rDNA". Cells 10, nr 2 (20.01.2021): 196. http://dx.doi.org/10.3390/cells10020196.
Pełny tekst źródłaRolfsmeier, Michael L., Michael J. Dixon, Luis Pessoa-Brandão, Richard Pelletier, Juan José Miret i Robert S. Lahue. "Cis-Elements Governing Trinucleotide Repeat Instability in Saccharomyces cerevisiae". Genetics 157, nr 4 (1.04.2001): 1569–79. http://dx.doi.org/10.1093/genetics/157.4.1569.
Pełny tekst źródłaSia, E. A., R. J. Kokoska, M. Dominska, P. Greenwell i T. D. Petes. "Microsatellite instability in yeast: dependence on repeat unit size and DNA mismatch repair genes." Molecular and Cellular Biology 17, nr 5 (maj 1997): 2851–58. http://dx.doi.org/10.1128/mcb.17.5.2851.
Pełny tekst źródłaKhristich, Alexandra N., Jillian F. Armenia, Robert M. Matera, Anna A. Kolchinski i Sergei M. Mirkin. "Large-scale contractions of Friedreich’s ataxia GAA repeats in yeast occur during DNA replication due to their triplex-forming ability". Proceedings of the National Academy of Sciences 117, nr 3 (7.01.2020): 1628–37. http://dx.doi.org/10.1073/pnas.1913416117.
Pełny tekst źródłaMansour, Ahmed A., Carine Tornier, Elisabeth Lehmann, Michel Darmon i Oliver Fleck. "Control of GT Repeat Stability in Schizosaccharomyces pombe by Mismatch Repair Factors". Genetics 158, nr 1 (1.05.2001): 77–85. http://dx.doi.org/10.1093/genetics/158.1.77.
Pełny tekst źródłaTabolacci, Elisabetta, Veronica Nobile, Cecilia Pucci i Pietro Chiurazzi. "Mechanisms of the FMR1 Repeat Instability: How Does the CGG Sequence Expand?" International Journal of Molecular Sciences 23, nr 10 (12.05.2022): 5425. http://dx.doi.org/10.3390/ijms23105425.
Pełny tekst źródłaGuo, Pei, i Sik Lok Lam. "Unusual structures of CCTG repeats and their participation in repeat expansion". Biomolecular Concepts 7, nr 5-6 (1.12.2016): 331–40. http://dx.doi.org/10.1515/bmc-2016-0024.
Pełny tekst źródłaCummings, Damian M., Yasaman Alaghband, Miriam A. Hickey, Prasad R. Joshi, S. Candice Hong, Chunni Zhu, Timothy K. Ando i in. "A critical window of CAG repeat-length correlates with phenotype severity in the R6/2 mouse model of Huntington's disease". Journal of Neurophysiology 107, nr 2 (15.01.2012): 677–91. http://dx.doi.org/10.1152/jn.00762.2011.
Pełny tekst źródłaBichara, Marc, Isabelle Pinet, Sylvie Schumacher i Robert P. P. Fuchs. "Mechanisms of Dinucleotide Repeat Instability in Escherichia coli". Genetics 154, nr 2 (1.02.2000): 533–42. http://dx.doi.org/10.1093/genetics/154.2.533.
Pełny tekst źródłaSavouret, Cédric, Corinne Garcia-Cordier, Jérôme Megret, Hein te Riele, Claudine Junien i Geneviève Gourdon. "MSH2-Dependent Germinal CTG Repeat Expansions Are Produced Continuously in Spermatogonia from DM1 Transgenic Mice". Molecular and Cellular Biology 24, nr 2 (15.01.2004): 629–37. http://dx.doi.org/10.1128/mcb.24.2.629-637.2004.
Pełny tekst źródłaDunn i Anderson. "To Repeat or Not to Repeat: Repetitive Sequences Regulate Genome Stability in Candida albicans". Genes 10, nr 11 (30.10.2019): 866. http://dx.doi.org/10.3390/genes10110866.
Pełny tekst źródłaAuer, Rebecca L., Christopher Jones, Roman A. Mullenbach, Denise Syndercombe-Court, Donald W. Milligan, Christopher D. Fegan i Finbarr E. Cotter. "Role for CCG-trinucleotide repeats in the pathogenesis of chronic lymphocytic leukemia". Blood 97, nr 2 (15.01.2001): 509–15. http://dx.doi.org/10.1182/blood.v97.2.509.
Pełny tekst źródłaBrown, Rebecca E., Xiaofeng A. Su, Stacey Fair, Katherine Wu, Lauren Verra, Robyn Jong, Kristin Andrykovich i Catherine H. Freudenreich. "The RNA export and RNA decay complexes THO and TRAMP prevent transcription-replication conflicts, DNA breaks, and CAG repeat contractions". PLOS Biology 20, nr 12 (27.12.2022): e3001940. http://dx.doi.org/10.1371/journal.pbio.3001940.
Pełny tekst źródłaHenderson, S. T., i T. D. Petes. "Instability of simple sequence DNA in Saccharomyces cerevisiae". Molecular and Cellular Biology 12, nr 6 (czerwiec 1992): 2749–57. http://dx.doi.org/10.1128/mcb.12.6.2749-2757.1992.
Pełny tekst źródłaHenderson, S. T., i T. D. Petes. "Instability of simple sequence DNA in Saccharomyces cerevisiae." Molecular and Cellular Biology 12, nr 6 (czerwiec 1992): 2749–57. http://dx.doi.org/10.1128/mcb.12.6.2749.
Pełny tekst źródłaRuskin, B., i G. R. Fink. "Mutations in POL1 increase the mitotic instability of tandem inverted repeats in Saccharomyces cerevisiae." Genetics 134, nr 1 (1.05.1993): 43–56. http://dx.doi.org/10.1093/genetics/134.1.43.
Pełny tekst źródłaKilburn, April E., Martin J. Shea, R. Geoffrey Sargent i John H. Wilson. "Insertion of a Telomere Repeat Sequence into a Mammalian Gene Causes Chromosome Instability". Molecular and Cellular Biology 21, nr 1 (1.01.2001): 126–35. http://dx.doi.org/10.1128/mcb.21.1.126-135.2001.
Pełny tekst źródłaSchnabel, E. L., i A. L. Jones. "Instability of a pEA29 Marker in Erwinia amylovora Previously Used for Strain Classification". Plant Disease 82, nr 12 (grudzień 1998): 1334–36. http://dx.doi.org/10.1094/pdis.1998.82.12.1334.
Pełny tekst źródłaSlavicek, James M., i Hallie M. Krider. "The organization and composition of the ribosomal RNA gene non-transcribed spacer of D. busckii is unique among the drosophilids". Genetical Research 50, nr 3 (grudzień 1987): 173–80. http://dx.doi.org/10.1017/s0016672300023661.
Pełny tekst źródłaGray, Steven J., Jeannine Gerhardt, Walter Doerfler, Lawrence E. Small i Ellen Fanning. "An Origin of DNA Replication in the Promoter Region of the Human Fragile X Mental Retardation (FMR1) Gene". Molecular and Cellular Biology 27, nr 2 (13.11.2006): 426–37. http://dx.doi.org/10.1128/mcb.01382-06.
Pełny tekst źródłaParekh, Virali J., Frank Wien, Wilfried Grange, Thomas A. De Long, Véronique Arluison i Richard R. Sinden. "Crucial Role of the C-Terminal Domain of Hfq Protein in Genomic Instability". Microorganisms 8, nr 10 (17.10.2020): 1598. http://dx.doi.org/10.3390/microorganisms8101598.
Pełny tekst źródłaChowdhury, Madhumita Roy, Sandeepa Chauhan, Anjali Dabral, B. K. Thelma, Neerja Gupta i Madhulika Kabra. "Validation of Polymerase Chain Reaction–Based Assay to Detect Actual Number of CGG Repeats in FMR1 Gene in Indian Fragile X Syndrome Patients". Journal of Child Neurology 32, nr 4 (20.12.2016): 371–78. http://dx.doi.org/10.1177/0883073816683075.
Pełny tekst źródła