Gotowa bibliografia na temat „Repeat instabilty”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Repeat instabilty”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Repeat instabilty"
Khristich, Alexandra N., i Sergei M. Mirkin. "On the wrong DNA track: Molecular mechanisms of repeat-mediated genome instability". Journal of Biological Chemistry 295, nr 13 (14.02.2020): 4134–70. http://dx.doi.org/10.1074/jbc.rev119.007678.
Pełny tekst źródłaLin, Yunfu, i John H. Wilson. "Transcription-Induced CAG Repeat Contraction in Human Cells Is Mediated in Part by Transcription-Coupled Nucleotide Excision Repair". Molecular and Cellular Biology 27, nr 17 (25.06.2007): 6209–17. http://dx.doi.org/10.1128/mcb.00739-07.
Pełny tekst źródłaCohen, Haim, Dorothy D. Sears, Drora Zenvirth, Philip Hieter i Giora Simchen. "Increased Instability of Human CTG Repeat Tracts on Yeast Artificial Chromosomes during Gametogenesis". Molecular and Cellular Biology 19, nr 6 (1.06.1999): 4153–58. http://dx.doi.org/10.1128/mcb.19.6.4153.
Pełny tekst źródłaBrouwer, Judith Rixt, Aline Huguet, Annie Nicole, Arnold Munnich i Geneviève Gourdon. "Transcriptionally Repressive Chromatin Remodelling and CpG Methylation in the Presence of Expanded CTG-Repeats at the DM1 Locus". Journal of Nucleic Acids 2013 (2013): 1–16. http://dx.doi.org/10.1155/2013/567435.
Pełny tekst źródłaGold, Michaela A., Jenna M. Whalen, Karine Freon, Zixin Hong, Ismail Iraqui, Sarah A. E. Lambert i Catherine H. Freudenreich. "Restarted replication forks are error-prone and cause CAG repeat expansions and contractions". PLOS Genetics 17, nr 10 (21.10.2021): e1009863. http://dx.doi.org/10.1371/journal.pgen.1009863.
Pełny tekst źródłaNeil, Alexander J., Julia A. Hisey, Ishtiaque Quasem, Ryan J. McGinty, Marcin Hitczenko, Alexandra N. Khristich i Sergei M. Mirkin. "Replication-independent instability of Friedreich’s ataxia GAA repeats during chronological aging". Proceedings of the National Academy of Sciences 118, nr 5 (25.01.2021): e2013080118. http://dx.doi.org/10.1073/pnas.2013080118.
Pełny tekst źródłaCalluori, Stephanie, Rebecca Stark i Brandon L. Pearson. "Gene–Environment Interactions in Repeat Expansion Diseases: Mechanisms of Environmentally Induced Repeat Instability". Biomedicines 11, nr 2 (10.02.2023): 515. http://dx.doi.org/10.3390/biomedicines11020515.
Pełny tekst źródłaGorbunova, Vera, Andrei Seluanov, Vincent Dion, Zoltan Sandor, James L. Meservy i John H. Wilson. "Selectable System for Monitoring the Instability of CTG/CAG Triplet Repeats in Mammalian Cells". Molecular and Cellular Biology 23, nr 13 (1.07.2003): 4485–93. http://dx.doi.org/10.1128/mcb.23.13.4485-4493.2003.
Pełny tekst źródłaJung, Da Eun, i Chul Hyoung Lyoo. "A Spinocerebellar Ataxia Type 6 Patient Caused by <i>De Novo</i> Expansion of Normal Range CAG Repeats". Journal of the Korean Neurological Association 42, nr 2 (1.05.2024): 150–52. http://dx.doi.org/10.17340/jkna.2023.0105.
Pełny tekst źródłaSu, Xiaofeng A., i Catherine H. Freudenreich. "Cytosine deamination and base excision repair cause R-loop–induced CAG repeat fragility and instability in Saccharomyces cerevisiae". Proceedings of the National Academy of Sciences 114, nr 40 (18.09.2017): E8392—E8401. http://dx.doi.org/10.1073/pnas.1711283114.
Pełny tekst źródłaRozprawy doktorskie na temat "Repeat instabilty"
Pontual, Laure de. "Identification de nouveaux facteurs chimiques capables de moduler l'instabilité des répétitions CTG dans la dystrophie myotonique de type 1". Electronic Thesis or Diss., Sorbonne université, 2024. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2024SORUS198.pdf.
Pełny tekst źródłaMyotonic dystrophy type 1 (DM1) is the most common dystrophy in adults, with an estimated prevalence of 1:8000 individuals. It is a multisystemic disease characterized by muscle, cardiac, cognitive, and digestive impairments, which contribute to a reduction in both life expectancy and quality of life for patients. DM1 is caused by an abnormal expansion of CTG repeats in the 3'UTR of the DMPK gene. In the general population, the number of repeats is under 35 CTG, whereas in patients, it exceeds 50 CTG and can reach several thousand repeats. As in other diseases caused by repeat expansions, the CTG expansion in DM1 is unstable. The repeat size increases across generations (intergenerational instability) and within tissues during a patient's lifetime (somatic instability). The number of inherited repeats and the level of somatic instability correlate with the age of onset and severity of symptoms. Thus, targeting the mutation itself to stabilize or reduce CTG repeat length is the most promising therapeutic strategy, as it would address all the pathophysiological mechanisms resulting from the mutation.Initially, my thesis work focused on identifying repositioned chemical molecules capable of modulating repeat instability. Screening the 1280 molecules from the Prestwick Chemical Library allowed me to identify 39 candidate molecules that alter the expression of a reporter gene, suggesting they could modulate repeat instability. After directly studying their effect on instability, I excluded four of these molecules that do not modulate repeat expression. I demonstrated that a fifth molecule, clomipramine, can modulate repeat instability in the screening cell model but not in murine and human DM1 fibroblasts.Concurrently, I showed that RGFP966, a selective HDAC3 inhibitor, induced contractions of CTG repeats in murine DM1 fibroblasts with approximately 650 repeats. This effect appears to depend on the dose of RGFP966 or the size of the CTG repeat, as it was not replicated in human DM1 fibroblasts with 350 CTG repeats. An RNA-seq approach in murine cells treated with RGFP966 identified several candidate genes involved in DNA replication as possible modifiers of instability. I also showed a decrease in bidirectional DMPK transcription associated with a probable hypermethylation downstream of the repeats in murine DM1 cells. In conclusion, my data suggest that RGFP966 modulates CTG repeat instability in DM1 through multiple mechanisms, potentially including chromatin structure modification at the DM1 locus and alterations in DNA replication.Overall, my thesis project contributed to the understanding of repeat instability mechanisms and the identification of chemical compounds that modulate instability dynamics. My work also highlighted the limitations of each model used and the complexity of identifying small molecules that alter CTG triplet dynamics in reporter cell models. Additionally, I participated in developing long-read sequencing (with and without amplification) for DM1, providing a rapid and highly informative new tool for the analysis of somatic mosaicism
Gadgil, Rujuta Yashodhan. "Instability at Trinucleotide Repeat DNAs". Wright State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=wright1472231204.
Pełny tekst źródłaUbink-Bontekoe, Carola Jacoba Maria. "CGG repeat instability and FXR proteins". [S.l.] : Rotterdam : [The Author] ; Erasmus University [Host], 2001. http://hdl.handle.net/1765/12091.
Pełny tekst źródłaBeaver, Jill M. "Trinucleotide Repeat Instability is Modulated by DNA Base Lesions and DNA Base Excision Repair". FIU Digital Commons, 2016. http://digitalcommons.fiu.edu/etd/3056.
Pełny tekst źródłaUeki, Junko. "Myotonic dystrophy type 1 patient-derived iPSCs for the investigation of CTG repeat instability". Kyoto University, 2018. http://hdl.handle.net/2433/230991.
Pełny tekst źródłaSchmidt, Kristina H. "CTG trinucleotide repeat instability in Escherichia coli". Thesis, University of Edinburgh, 1999. http://hdl.handle.net/1842/14353.
Pełny tekst źródłaZahra, Rabaab. "CAG.CTG trinucleotide repeat instability in the E.coli chromosome". Thesis, University of Edinburgh, 2006. http://hdl.handle.net/1842/11667.
Pełny tekst źródłaChan, Kara Y. "MECHANISMS OF TRINUCLEOTIDE REPEAT INSTABILITY DURING DNA SYNTHESIS". UKnowledge, 2019. https://uknowledge.uky.edu/toxicology_etds/29.
Pełny tekst źródłaPickett, Hilda A. "Molecular characterisation of instability in human telomere repeat arrays". Thesis, University of Leicester, 2002. http://hdl.handle.net/2381/30343.
Pełny tekst źródłaChan, Nelson Lap Shun. "IDENTIFICATION OF ACTIVITIES INVOLVED IN CAG/CTG REPEAT INSTABILITY". UKnowledge, 2011. http://uknowledge.uky.edu/gradschool_diss/832.
Pełny tekst źródłaKsiążki na temat "Repeat instabilty"
1946-, Oostra Ben A., red. Trinucleotide diseases and instability. Berlin: Springer, 1998.
Znajdź pełny tekst źródłaHughes, Alis, i Lesley Jones. Pathogenic Mechanisms. Oxford University Press, 2014. http://dx.doi.org/10.1093/med/9780199929146.003.0013.
Pełny tekst źródłaZeitlin, Vladimir. Rotating Shallow-Water model with Horizontal Density and/or Temperature Gradients. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198804338.003.0014.
Pełny tekst źródłaMacartney, Huw. The Bank Culture Debate. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198843764.001.0001.
Pełny tekst źródłaThe Global State of Democracy 2022: Forging Social Contracts in a Time of Discontent. International Institute for Democracy and Electoral Assistance (International IDEA), 2022. http://dx.doi.org/10.31752/idea.2022.56.
Pełny tekst źródłaHanning, Robert W. Boccaccio, Chaucer, and Stories for an Uncertain World. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192894755.001.0001.
Pełny tekst źródłaCzęści książek na temat "Repeat instabilty"
Wells, Robert D., Albino Bacolla i Richard P. Bowater. "Instabilities of Triplet Repeats: Factors and Mechanisms". W Trinucleotide Diseases and Instability, 133–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-540-69680-3_4.
Pełny tekst źródłaParniewski, Pawel, i Pawel Staczek. "Molecular Mechanisms of TRS Instability". W Triple Repeat Diseases of the Nervous Systems, 1–25. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0117-6_1.
Pełny tekst źródłaCurtis, J. Willard. "Churning: Repeated Optimization and Cooperative Instability". W Cooperative Systems, 105–16. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4613-0219-3_6.
Pełny tekst źródłaSalina, E. A., E. G. Pestsova i N. P. Goncharov. "Instability of Subtelomeric Spelt1 Repeats of Wheat Species". W Stadler Genetics Symposia Series, 235–36. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4235-3_23.
Pełny tekst źródłaPolleys, Erica J., i Catherine H. Freudenreich. "Methods to Study Repeat Fragility and Instability in Saccharomyces cerevisiae". W Methods in Molecular Biology, 403–19. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7306-4_28.
Pełny tekst źródłaWalker, Catherine A., i Catherine M. Abbott. "Trinucleotide Repeat Instability as a Cause of Human Genetic Disease". W Encyclopedia of Genetics, 396–400. New York: Routledge, 2014. http://dx.doi.org/10.4324/9781315073972-55.
Pełny tekst źródłaMowbray, Miranda. "Observable Instability for the Repeated Prisoner’s Dilemma". W Approximation, Optimization and Mathematical Economics, 223–34. Heidelberg: Physica-Verlag HD, 2001. http://dx.doi.org/10.1007/978-3-642-57592-1_20.
Pełny tekst źródłaDeka, Ranjan, i Ranajit Chakraborty. "Trinucleotide Repeats, Genetic Instability and Variation in the Human Genome". W Genomic Diversity, 53–64. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4263-6_4.
Pełny tekst źródłaLai, Yanhao, Ruipeng Lei, Yaou Ren i Yuan Liu. "Methods to Study Trinucleotide Repeat Instability Induced by DNA Damage and Repair". W Methods in Molecular Biology, 87–101. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9500-4_5.
Pełny tekst źródłaKobayashi, Takehiko. "Genome Instability of Repetitive Sequence: Lesson from the Ribosomal RNA Gene Repeat". W DNA Replication, Recombination, and Repair, 235–47. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-55873-6_10.
Pełny tekst źródłaStreszczenia konferencji na temat "Repeat instabilty"
Akatsuka, T., H. Imai, K. Arai, H. Sakuma, A. Ishizawa, T. Goh, T. Hashimoto i in. "Highly stable laser repeater system with frequency instability below 10-21". W Conference on Lasers and Electro-Optics/Pacific Rim. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleopr.2022.cfa6g_02.
Pełny tekst źródłaGrasser, Tibor. "Towards Understanding Negative Bias Temperature Instability". W 2008 IEEE International Integrated Reliability Workshop Final Report (IRW). IEEE, 2008. http://dx.doi.org/10.1109/irws.2008.4796147.
Pełny tekst źródłaGrasser, Tibor. "Towards Understanding Negative Bias Temperature Instability". W 2008 IEEE International Integrated Reliability Workshop Final Report (IRW). IEEE, 2008. http://dx.doi.org/10.1109/irws.2008.4796110.
Pełny tekst źródłaHensman Moss, Davina, Anupriya Dalmia, Valentina Galassi Deforie, Kristina Ibanez, Sarah J. Tabrizi, Nayana Lahiri, Henry Houlden, Peter Holmans, Lesley Jones i Arianna Tucci. "C12 HTT repeat instability in family trios in the 100,000 genomes project". W EHDN 2022 Plenary Meeting, Bologna, Italy, Abstracts. BMJ Publishing Group Ltd, 2022. http://dx.doi.org/10.1136/jnnp-2022-ehdn.56.
Pełny tekst źródłaZafar, Sufi. "The Negative Bias Temperature Instability in MOS Devices". W 2006 IEEE International Integrated Reliability Workshop Final Report. IEEE, 2006. http://dx.doi.org/10.1109/irws.2006.305255.
Pełny tekst źródłaHongyu Zhao, Yue Zhao, Rong Chai i Lu Cai. "Instability of the DNA repeats mutation in humans hereditary disorders". W 2011 International Conference on Remote Sensing, Environment and Transportation Engineering (RSETE). IEEE, 2011. http://dx.doi.org/10.1109/rsete.2011.5965950.
Pełny tekst źródłaLelis, A. J., R. Green, D. Habersat i N. Goldsman. "Effect of Threshold-Voltage Instability on SiC DMOSFET Reliability". W 2008 IEEE International Integrated Reliability Workshop Final Report (IRW). IEEE, 2008. http://dx.doi.org/10.1109/irws.2008.4796090.
Pełny tekst źródłaLelis, Aivars, D. Habersat, R. Green i N. Goldsman. "Effect of Threshold-Voltage Instability on SiC DMOSFET Reliability". W 2008 IEEE International Integrated Reliability Workshop Final Report (IRW). IEEE, 2008. http://dx.doi.org/10.1109/irws.2008.4796136.
Pełny tekst źródłaLelis, A. J., S. Potbhare, D. Habersat, G. Pennington i N. Goldsman. "Modeling and Characterization of Bias Stress-Induced Instability of SiC MOSFETs". W 2006 IEEE International Integrated Reliability Workshop Final Report. IEEE, 2006. http://dx.doi.org/10.1109/irws.2006.305235.
Pełny tekst źródłaGrasser, Tibor, Paul-Jurgen Wagner, Philipp Hehenberger, Wolfgang Gos i Ben Kaczer. "A rigorous study of measurement techniques for negative bias temperature instability". W 2007 IEEE International Integrated Reliability Workshop Final Report. IEEE, 2007. http://dx.doi.org/10.1109/irws.2007.4469212.
Pełny tekst źródłaRaporty organizacyjne na temat "Repeat instabilty"
Brunner, Huschenbett i Beshouri. PR-336-06206-R01 Engine Control for Legacy Engines - Cylinder and Cycle Level Control. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), maj 2014. http://dx.doi.org/10.55274/r0010041.
Pełny tekst źródłaChao, Alex. Very Large Hadron Collider Instability Workshop Summary Report. Office of Scientific and Technical Information (OSTI), kwiecień 2001. http://dx.doi.org/10.2172/784899.
Pełny tekst źródłaLahey, R. T. Jr. Analysis of nuclear reactor instability phenomena. Progress report. Office of Scientific and Technical Information (OSTI), marzec 1993. http://dx.doi.org/10.2172/10131526.
Pełny tekst źródłaAluie, Hussein. Final Technical Report: Ablative Magnetohydrodynamic Rayleigh-Taylor Instability. Office of Scientific and Technical Information (OSTI), marzec 2023. http://dx.doi.org/10.2172/2311793.
Pełny tekst źródłaIsmail, Zenobia. Interaction Between Food Prices and Political Instability. Institute of Development Studies (IDS), maj 2021. http://dx.doi.org/10.19088/k4d.2021.091.
Pełny tekst źródłaDynan, William S. Final Technical Report - Mechanisms and pathways controlling genomic instability. Office of Scientific and Technical Information (OSTI), maj 2013. http://dx.doi.org/10.2172/1081424.
Pełny tekst źródłaDynan, William S. Final report- Links between persistent DNA damage, genome instability, and aging. Office of Scientific and Technical Information (OSTI), listopad 2016. http://dx.doi.org/10.2172/1333814.
Pełny tekst źródłaMajda, Andrew J. Report: Low Frequency Predictive Skill Despite Structural Instability and Model Error. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2013. http://dx.doi.org/10.21236/ada601429.
Pełny tekst źródłaMizuno, K., J. S. DeGroot, R. P. Drake i W. Seka. Collective Thomson scattering measurements of the Ion Acoustic Decay Instability. Final report. Office of Scientific and Technical Information (OSTI), grudzień 1993. http://dx.doi.org/10.2172/10143761.
Pełny tekst źródłaYoung, P., P. Drake, Estabrook, K. Mizuno i J. S. De Groot. Final report of investigation of the Acoustic Decay Instability in laser plasma interaction. Office of Scientific and Technical Information (OSTI), lipiec 1991. http://dx.doi.org/10.2172/6027882.
Pełny tekst źródła