Gotowa bibliografia na temat „Remote Sensing Image Data Analysis”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Remote Sensing Image Data Analysis”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Remote Sensing Image Data Analysis"
Fu, N., L. Sun, H. Z. Yang, J. Ma i B. Q. Liao. "RESEARCH ON MULTI-SOURCE SATELLITE IMAGE DATABASE MANAGEMENT SYSTEM". ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-3/W10 (7.02.2020): 565–68. http://dx.doi.org/10.5194/isprs-archives-xlii-3-w10-565-2020.
Pełny tekst źródłaLi, Runya, i Shenglian Li. "Multimedia Image Data Analysis Based on KNN Algorithm". Computational Intelligence and Neuroscience 2022 (12.04.2022): 1–8. http://dx.doi.org/10.1155/2022/7963603.
Pełny tekst źródłaKarimov, B., G. Karimova i N. Amankulova. "Land Cover Classification Improvements by Remote Sensing Data Fusion". Bulletin of Science and Practice, nr 2 (15.02.2023): 66–74. http://dx.doi.org/10.33619/2414-2948/87/07.
Pełny tekst źródłaVeljanovski, Tatjana, Urša Kanjir i Krištof Oštir. "Object-based image analysis of remote sensing data". Geodetski vestnik 55, nr 04 (2011): 641–64. http://dx.doi.org/10.15292/geodetski-vestnik.2011.04.641-664.
Pełny tekst źródłaBazi, Yakoub, Gabriele Cavallaro, Begüm Demir i Farid Melgani. "Learning from Data for Remote Sensing Image Analysis". International Journal of Remote Sensing 43, nr 15-16 (18.08.2022): 5527–33. http://dx.doi.org/10.1080/01431161.2022.2131481.
Pełny tekst źródłaLukáš Brodský and Luboš, Borůvka. "Object-oriented Fuzzy Analysis of Remote Sensing Data for Bare Soil Brightness Mapping". Soil and Water Research 1, No. 3 (7.01.2013): 79–84. http://dx.doi.org/10.17221/6509-swr.
Pełny tekst źródłaYu, Songyi, i Guotao Wang. "Study on the example segmentation method of remote sensing image based on neural network". Advances in Engineering Technology Research 6, nr 1 (12.06.2023): 129. http://dx.doi.org/10.56028/aetr.6.1.129.2023.
Pełny tekst źródłaKhare, Smriti. "Remote Sensing Imagery Sensors and Image Interpretation". International Journal for Research in Applied Science and Engineering Technology 9, nr 9 (30.09.2021): 606–7. http://dx.doi.org/10.22214/ijraset.2021.38019.
Pełny tekst źródłaHutapea, Destri Yanti, i Octaviani Hutapea. "WATERMARKING METHOD OF REMOTE SENSING DATA USING STEGANOGRAPHY TECHNIQUE BASED ON LEAST SIGNIFICANT BIT HIDING". International Journal of Remote Sensing and Earth Sciences (IJReSES) 15, nr 1 (6.07.2018): 63. http://dx.doi.org/10.30536/j.ijreses.2018.v15.a2824.
Pełny tekst źródłaTang, Yang, Jiongchao Yan, Yueqi Wu, Jie Hong, Lei Xu i Zhangrui Lin. "Design of Remote Sensing Image Data Analysis and Processing Platform Based on Environmental Monitoring". Journal of Physics: Conference Series 2136, nr 1 (1.12.2021): 012056. http://dx.doi.org/10.1088/1742-6596/2136/1/012056.
Pełny tekst źródłaRozprawy doktorskie na temat "Remote Sensing Image Data Analysis"
Fountanas, Leonidas. "Principal components based techniques for hyperspectral image data". Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2004. http://library.nps.navy.mil/uhtbin/hyperion/04Dec%5FFountanas.pdf.
Pełny tekst źródłaCheriyadat, Anil Meerasa. "Limitations of principal component analysis for dimensionality-reduction for classification of hyperspectral data". Master's thesis, Mississippi State : Mississippi State University, 2003. http://library.msstate.edu/etd/show.asp?etd=etd-11072003-133109.
Pełny tekst źródłaRobert, Denis J. "Selection and analysis of optimal textural features for accurate classification of monochrome digitized image data /". Online version of thesis, 1989. http://hdl.handle.net/1850/11364.
Pełny tekst źródłaKHALIQ, ALEEM. "Advancements in Multi-temporal Remote Sensing Data Analysis Techniques for Precision Agriculture". Doctoral thesis, Politecnico di Torino, 2020. http://hdl.handle.net/11583/2839838.
Pełny tekst źródłaMarcellin, Michael W., Naoufal Amrani, Serra-Sagristà Joan, Valero Laparra i Jesus Malo. "Regression Wavelet Analysis for Lossless Coding of Remote-Sensing Data". IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2016. http://hdl.handle.net/10150/621311.
Pełny tekst źródłaFischer, Manfred M., Sucharita Gopal, Petra Staufer-Steinnocher i Klaus Steinocher. "Evaluation of Neural Pattern Classifiers for a Remote Sensing Application". WU Vienna University of Economics and Business, 1995. http://epub.wu.ac.at/4184/1/WSG_DP_4695.pdf.
Pełny tekst źródłaSeries: Discussion Papers of the Institute for Economic Geography and GIScience
Linden, Sebastian van der. "Investigating the potential of hyperspectral remote sensing data for the analysis of urban imperviousness". Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2008. http://dx.doi.org/10.18452/15757.
Pełny tekst źródłaUrbanization is one of the most powerful and irreversible processes by which humans modify the Earth''s surface. Optical remote sensing is a main source of Earth observation products which help to better understand this dynamic process and its consequences. This work investigates the potential of airborne hyperspectral data to provide information on urban imperviousness that is needed for an integrated analysis of the coupled natural and human systems therein. For this purpose the complete processing workflow from preprocessing of the raw image to the generation of geocoded maps on land cover and impervious surface coverage is performed using Hyperspectral Mapper data acquired over Berlin, Germany. The traditional workflow for hyperspectral data is extended or modified at several points: a normalization of brightness gradients that are caused by directional reflectance properties of urban surfaces is included into radiometric preprocessing; support vector machines are used to classify five spectrally complex land cover classes without previous feature extraction or the definition of sub-classes. A detailed assessment of such maps is performed based on various reference products. Results show that the accuracy of derived maps depends on several steps within the processing workflow. For example, the support vector machine classification of hyperspectral data itself is accurate but geocoding without detailed terrain information introduces critical errors; impervious surface estimates correlate well with ground data but trees covering impervious surface below generally causes offsets; image segmentation does not enhance spectral classification accuracy of the spatially heterogeneous area but offers an interesting way of data compression and more time effective processing. Findings from this work help judging the reliability of data products and in doing so advance a possible extension of urban remote sensing approaches to areas where only little additional data exists.
Parshakov, Ilia. "Automatic class labeling of classified imagery using a hyperspectral library". Thesis, Lethbridge, Alta. : University of Lethbridge, Dept. of Geography, c2012, 2012. http://hdl.handle.net/10133/3372.
Pełny tekst źródłavii, 93 leaves : ill., maps (some col.) ; 29 cm
Magnini, Luigi. "Remote sensing e object-based image analysis: metodologie di approccio per la creazione di standard archeologici". Doctoral thesis, Università degli studi di Padova, 2017. http://hdl.handle.net/11577/3423260.
Pełny tekst źródłaIl campo del remote sensing ha vissuto un incredibile sviluppo negli ultimi anni per merito della crescente qualità e varietà dei sensori e dell’abbattimento dei costi strumentali. Le potenzialità archeologiche sono state ben presto evidenti. Finora, l’interpretazione dei dati è rimasta però prerogativa dell’operatore umano, mediata dalle sue competenze e dalla sua esperienza. Il progressivo aumento di volume dei dataset (cd. “big data explosion”) e la necessità di lavorare su progetti territoriali ad ampia scala hanno reso ora indispensabile una revisione delle modalità di studio tradizionalmente impiegate in ambito archeologico. In questo senso, la ricerca presentata di seguito contribuisce alla valutazione delle potenzialità e dei limiti dell’emergente campo d’indagine dell’object-based image analysis (OBIA). Il lavoro si è focalizzato sulla definizione di protocolli OBIA per il trattamento di dati tridimensionali acquisiti tramite laser scanner aviotrasportato e terrestre attraverso l’elaborazione di un variegato spettro di casi di studio in grado di esemplificare le possibilità offerte dal metodo in archeologia. I risultati ottenuti hanno consentito di identificare, mappare e quantificare in modo automatico e semi-automatico le tracce del paesaggio di guerra nell’area intorno a Forte Luserna (TN) e il tessuto osteologico ricalcificato sui crani di due inumati della necropoli protostorica dell’Olmo di Nogara (VR). Infine, il metodo è stato impiegato per lo sviluppo di un modello predittivo per la localizzazione dei “punti di controllo” in ambiente montano, che è stato studiato per l’area occidentale dell’Altopiano di Asiago (VI) e in seguito riapplicato con successo nella conca di Bressanone (BZ). L’accuratezza dei risultati, verificati di volta in volta tramite ricognizioni a terra, validazione incrociata tramite analisi da remoto e comparazione con i dati editi in letteratura, ha confermato il potenziale della metodologia, consentendo di introdurre il concetto di Archaeological Object-Based Image Analysis (ArchaeOBIA), per rimarcare le specificità delle applicazioni object-based nell’ambito della disciplina archeologica.
Gapper, Justin J. "Bias Reduction in Machine Learning Classifiers for Spatiotemporal Analysis of Coral Reefs using Remote Sensing Images". Chapman University Digital Commons, 2019. https://digitalcommons.chapman.edu/cads_dissertations/2.
Pełny tekst źródłaKsiążki na temat "Remote Sensing Image Data Analysis"
Processing of remote sensing data. Lisse: Balkema, 2003.
Znajdź pełny tekst źródłaGirard, Michel-Claude. Processing of remote sensing data. Lisse: Balkema, 2001.
Znajdź pełny tekst źródłaCanty, Morton John. Image analysis, classification, and change detection in remote sensing: With algorithms for ENVI/IDL. Wyd. 2. Boca Raton: Taylor & Francis, 2010.
Znajdź pełny tekst źródłaCanty, Morton John. Image analysis, classification, and change detection in remote sensing: With algorithms for ENVI/IDL. Wyd. 2. Boca Raton: Taylor & Francis, 2010.
Znajdź pełny tekst źródłaIEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data (2003 Greenbelt, Md.). 2003 IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data (a workshop honoring Professor David A. Landgrebe): NASA Goddard Space Flight Visitor Center, Greenbelt, Maryland, USA, 27-28 October 2003. Piscataway, NJ: IEEE, 2004.
Znajdź pełny tekst źródłaJ, Lavreau, i Bardinet Claude, red. Image analysis, geological control, and radiometric survey of LAND[S]AT TM data in Tanzania. Tervuren, Belgique: Musee royal de l'Afrique centrale, 1988.
Znajdź pełny tekst źródłaDigital analysis of remotely sensed imagery. New York: McGraw-Hill, 2009.
Znajdź pełny tekst źródłaImage analysis, classification, and change detection in remote sensing: With algorithms for ENVI/IDL. Wyd. 2. Boca Raton: Taylor & Francis, 2010.
Znajdź pełny tekst źródła2-D and 3-D image registration for medical, remote sensing, and industrial applications. Hoboken, NJ: J. Wiley & Sons, 2005.
Znajdź pełny tekst źródłaA hierarchical object-based approach for urban land-use classification from remote sensing data. Enschede, Netherlands: ITC, 2003.
Znajdź pełny tekst źródłaCzęści książek na temat "Remote Sensing Image Data Analysis"
Richards, John A., i Xiuping Jia. "Data Fusion". W Remote Sensing Digital Image Analysis, 293–312. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03978-6_12.
Pełny tekst źródłaRichards, John A. "Multispectral Transformations of Image Data". W Remote Sensing Digital Image Analysis, 127–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-662-02462-1_6.
Pełny tekst źródłaRichards, John A. "Fourier Transformation of Image Data". W Remote Sensing Digital Image Analysis, 148–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-662-02462-1_7.
Pełny tekst źródłaRichards, John A. "Multispectral Transformations of Image Data". W Remote Sensing Digital Image Analysis, 133–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-88087-2_6.
Pełny tekst źródłaRichards, John A. "Fourier Transformation of Image Data". W Remote Sensing Digital Image Analysis, 155–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-88087-2_7.
Pełny tekst źródłaRichards, John A., i Xiuping Jia. "Interpretation of Hyperspectral Image Data". W Remote Sensing Digital Image Analysis, 313–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03978-6_13.
Pełny tekst źródłaRichards, John A., i Xiuping Jia. "Multispectral Transformations of Image Data". W Remote Sensing Digital Image Analysis, 133–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03978-6_6.
Pełny tekst źródłaRichards, John A., i Xiuping Jia. "Fourier Transformation of Image Data". W Remote Sensing Digital Image Analysis, 155–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03978-6_7.
Pełny tekst źródłaRichards, John A. "The Interpretation of Digital Image Data". W Remote Sensing Digital Image Analysis, 69–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-662-02462-1_3.
Pełny tekst źródłaRichards, John A. "The Interpretation of Digital Image Data". W Remote Sensing Digital Image Analysis, 75–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-88087-2_3.
Pełny tekst źródłaStreszczenia konferencji na temat "Remote Sensing Image Data Analysis"
Teillet, P. M., Brian L. Markham i Richard R. Irish. "Landsat radiometric cross-calibration: extended analysis of tandem image data sets". W Remote Sensing, redaktorzy Roland Meynart, Steven P. Neeck i Haruhisa Shimoda. SPIE, 2005. http://dx.doi.org/10.1117/12.626324.
Pełny tekst źródłaLiu, Zhigang, i Zhichao Sun. "Active one-class classification of remote sensing image". W International Conference on Earth Observation Data Processing and Analysis, redaktorzy Deren Li, Jianya Gong i Huayi Wu. SPIE, 2008. http://dx.doi.org/10.1117/12.816115.
Pełny tekst źródłaSoergel, Uwe, i Ulrich Thoennessen. "Automatic geocoding of high-value targets using structural image analysis and GIS data". W Remote Sensing, redaktor Sebastiano B. Serpico. SPIE, 1999. http://dx.doi.org/10.1117/12.373246.
Pełny tekst źródłaShao, Zhenfeng, i Deren Li. "A strategy of using remote sensing image to update the geographical data". W MIPPR 2005 Image Analysis Techniques, redaktorzy Deren Li i Hongchao Ma. SPIE, 2005. http://dx.doi.org/10.1117/12.654553.
Pełny tekst źródłaZhang, Hongsheng, i Yan Li. "Shape-adaptive neighborhood classification method for remote sensing image". W International Conference on Earth Observation Data Processing and Analysis, redaktorzy Deren Li, Jianya Gong i Huayi Wu. SPIE, 2008. http://dx.doi.org/10.1117/12.815857.
Pełny tekst źródłaDu, Qian. "Noise estimation for remote sensing image data analysis". W Optical Science and Technology, SPIE's 48th Annual Meeting, redaktorzy Sylvia S. Shen i Paul E. Lewis. SPIE, 2004. http://dx.doi.org/10.1117/12.508101.
Pełny tekst źródłaLiu, Liangming, i Deren Li. "Drought analysis based on remote sensing and ancillary data". W Multispectral Image Processing and Pattern Recognition, redaktorzy Qingxi Tong, Yaoting Zhu i Zhenfu Zhu. SPIE, 2001. http://dx.doi.org/10.1117/12.441382.
Pełny tekst źródłaHe, Hui, i Xianchuan Yu. "A comparison of PCA/ICA for data preprocessing in remote sensing imagery classification". W MIPPR 2005 Image Analysis Techniques, redaktorzy Deren Li i Hongchao Ma. SPIE, 2005. http://dx.doi.org/10.1117/12.652298.
Pełny tekst źródłaLiu, Tingting, Pingxiang Li, Liangpei Zhang i Xu Chen. "Multi-spectral remote sensing image retrieval based on semantic extraction". W International Conference on Earth Observation Data Processing and Analysis, redaktorzy Deren Li, Jianya Gong i Huayi Wu. SPIE, 2008. http://dx.doi.org/10.1117/12.815899.
Pełny tekst źródłaJackson, Philip T. G., Carl J. Nelson, Jens Schiefele i Boguslaw Obara. "Runway detection in High Resolution remote sensing data". W 2015 9th International Symposium on Image and Signal Processing and Analysis (ISPA). IEEE, 2015. http://dx.doi.org/10.1109/ispa.2015.7306053.
Pełny tekst źródłaRaporty organizacyjne na temat "Remote Sensing Image Data Analysis"
Falconer, David G. L51774 Remote Sensing of Hazardous Ground Movement about Buried Gas Transmission Lines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), sierpień 1997. http://dx.doi.org/10.55274/r0011973.
Pełny tekst źródłaKholoshyn, Ihor V., Olga V. Bondarenko, Olena V. Hanchuk i Iryna M. Varfolomyeyeva. Cloud technologies as a tool of creating Earth Remote Sensing educational resources. [б. в.], lipiec 2020. http://dx.doi.org/10.31812/123456789/3885.
Pełny tekst źródłaCohen, Yafit, Carl Rosen, Victor Alchanatis, David Mulla, Bruria Heuer i Zion Dar. Fusion of Hyper-Spectral and Thermal Images for Evaluating Nitrogen and Water Status in Potato Fields for Variable Rate Application. United States Department of Agriculture, listopad 2013. http://dx.doi.org/10.32747/2013.7594385.bard.
Pełny tekst źródłaDucey, Craig. Hierarchical Image Analysis and Characterization of Scaling Effects in Remote Sensing. Portland State University Library, styczeń 2000. http://dx.doi.org/10.15760/etd.399.
Pełny tekst źródłaLasko, Kristofer, i Elena Sava. Semi-automated land cover mapping using an ensemble of support vector machines with moderate resolution imagery integrated into a custom decision support tool. Engineer Research and Development Center (U.S.), listopad 2021. http://dx.doi.org/10.21079/11681/42402.
Pełny tekst źródłaSaltus, Allen, Maygarden Jr., Saucier Benjamin i Roger T. Analysis and Technical Report of Remote Sensing Data for the USS Kinsman. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2000. http://dx.doi.org/10.21236/ada375666.
Pełny tekst źródłaBorrett, Veronica, Melissa Hanham, Gunnar Jeremias, Jonathan Forman, James Revill, John Borrie, Crister Åstot i in. Science and Technology for WMD Compliance Monitoring and Investigations. The United Nations Institute for Disarmament Research, grudzień 2020. http://dx.doi.org/10.37559/wmd/20/wmdce11.
Pełny tekst źródłaCarroll, Herbert B., i Genliang Guo. A New Methodology for Oil and Gas Exploration Using Remote Sensing Data and Surface Fracture Analysis. Office of Scientific and Technical Information (OSTI), luty 1999. http://dx.doi.org/10.2172/3244.
Pełny tekst źródłaSeginer, Ido, Louis D. Albright i Robert W. Langhans. On-line Fault Detection and Diagnosis for Greenhouse Environmental Control. United States Department of Agriculture, luty 2001. http://dx.doi.org/10.32747/2001.7575271.bard.
Pełny tekst źródłaScott R. Reeves i Randal L. Billingsley. Identifying Oil Exploration Leads using Intergrated Remote Sensing and Seismic Data Analysis, Lake Sakakawea, Fort Berthold Indian Reservation, Willistion Basin. Office of Scientific and Technical Information (OSTI), luty 2004. http://dx.doi.org/10.2172/925463.
Pełny tekst źródła