Artykuły w czasopismach na temat „Remodelled genes”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Remodelled genes”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Germain, Adeline, Jeanne-Marie Perotin, Gonzague Delepine, Myriam Polette, Gaëtan Deslée i Valérian Dormoy. "Whole-Exome Sequencing of Bronchial Epithelial Cells Reveals a Genetic Print of Airway Remodelling in COPD". Biomedicines 10, nr 7 (15.07.2022): 1714. http://dx.doi.org/10.3390/biomedicines10071714.
Pełny tekst źródłaLi, Mengyao, Su Mon Aye, Maizbha Uddin Ahmed, Mei-Ling Han, Chen Li, Jiangning Song, John D. Boyce i in. "Pan-transcriptomic analysis identified common differentially expressed genes of Acinetobacter baumannii in response to polymyxin treatments". Molecular Omics 16, nr 4 (2020): 327–38. http://dx.doi.org/10.1039/d0mo00015a.
Pełny tekst źródłaOu, Yaqing, i James O. McInerney. "Eukaryote Genes Are More Likely than Prokaryote Genes to Be Composites". Genes 10, nr 9 (28.08.2019): 648. http://dx.doi.org/10.3390/genes10090648.
Pełny tekst źródłaKuleesha, Yadav, Wee Choo Puah i Martin Wasser. "A model of muscle atrophy based on live microscopy of muscle remodelling in Drosophila metamorphosis". Royal Society Open Science 3, nr 2 (luty 2016): 150517. http://dx.doi.org/10.1098/rsos.150517.
Pełny tekst źródłaWang, Yuzhe, Shiyu Li, Mengge Liu, Jiajia Wang, Zhengbin Fei, Feng Wang, Zhenyou Jiang, Wenhua Huang i Hanxiao Sun. "Rhodosporidium toruloides sir2-like genes remodelled the mitochondrial network to improve the phenotypes of ageing cells". Free Radical Biology and Medicine 134 (kwiecień 2019): 64–75. http://dx.doi.org/10.1016/j.freeradbiomed.2018.12.036.
Pełny tekst źródłaAhmedien, Diaa Ahmed Mohamed. "Bio-pixels: A stem cell-based interactive–generative interface designed to redefine technologies of self-making in new media arts". Convergence: The International Journal of Research into New Media Technologies 26, nr 5-6 (29.11.2019): 1367–90. http://dx.doi.org/10.1177/1354856519890096.
Pełny tekst źródłaDalla Torre, Marco, Daniele Pittari, Alessandra Boletta, Laura Cassina, Roberto Sitia i Tiziana Anelli. "Mitochondria remodeling during endometrial stromal cell decidualization". Life Science Alliance 7, nr 12 (4.10.2024): e202402627. http://dx.doi.org/10.26508/lsa.202402627.
Pełny tekst źródłaReik, Wolf, Fatima Santos, Kohzoh Mitsuya, Hugh Morgan i Wendy Dean. "Epigenetic asymmetry in the mammalian zygote and early embryo: relationship to lineage commitment?" Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 358, nr 1436 (29.08.2003): 1403–9. http://dx.doi.org/10.1098/rstb.2003.1326.
Pełny tekst źródłaChen, Xinxin, Jun Wang, Donna Woltring, Steve Gerondakis i M. Frances Shannon. "Histone Dynamics on the Interleukin-2 Gene in Response to T-Cell Activation". Molecular and Cellular Biology 25, nr 8 (15.04.2005): 3209–19. http://dx.doi.org/10.1128/mcb.25.8.3209-3219.2005.
Pełny tekst źródłaPRAJAPATI, SURENDRA K., RICHARD CULLETON i OM P. SINGH. "Protein trafficking in Plasmodium falciparum-infected red cells and impact of the expansion of exported protein families". Parasitology 141, nr 12 (30.07.2014): 1533–43. http://dx.doi.org/10.1017/s0031182014000948.
Pełny tekst źródłaBoudin, Eveline, i Wim Van Hul. "MECHANISMS IN ENDOCRINOLOGY: Genetics of human bone formation". European Journal of Endocrinology 177, nr 2 (sierpień 2017): R69—R83. http://dx.doi.org/10.1530/eje-16-0990.
Pełny tekst źródłaWood, W., M. Turmaine, R. Weber, V. Camp, R. A. Maki, S. R. McKercher i P. Martin. "Mesenchymal cells engulf and clear apoptotic footplate cells in macrophageless PU.1 null mouse embryos". Development 127, nr 24 (15.12.2000): 5245–52. http://dx.doi.org/10.1242/dev.127.24.5245.
Pełny tekst źródłaFarrell, K., K. Uh i K. Lee. "45 Expression patterns of PRDM family genes in porcine pre-implantation embryos". Reproduction, Fertility and Development 32, nr 2 (2020): 148. http://dx.doi.org/10.1071/rdv32n2ab45.
Pełny tekst źródłaPaino, Francesca, Marcella La Noce, Alessandra Giuliani, Alfredo De Rosa, Serena Mazzoni, Luigi Laino, Evzen Amler, Gianpaolo Papaccio, Vincenzo Desiderio i Virginia Tirino. "Human DPSCs fabricate vascularized woven bone tissue: a new tool in bone tissue engineering". Clinical Science 131, nr 8 (6.04.2017): 699–713. http://dx.doi.org/10.1042/cs20170047.
Pełny tekst źródłaBen-Aicha, Soumaya, Rafael Escate, Laura Casaní, Teresa Padró, Esther Peña, Gemma Arderiu, Guiomar Mendieta, Lina Badimón i Gemma Vilahur. "High-density lipoprotein remodelled in hypercholesterolaemic blood induce epigenetically driven down-regulation of endothelial HIF-1α expression in a preclinical animal model". Cardiovascular Research 116, nr 7 (30.08.2019): 1288–99. http://dx.doi.org/10.1093/cvr/cvz239.
Pełny tekst źródłaVINCENTI, Matthew P., Charles I. COON, J. Andrew MENGSHOL, Sue YOCUM, Peter MITCHELL i Constance E. BRINCKERHOFF. "Cloning of the gene for interstitial collagenase-3 (matrix metalloproteinase-13) from rabbit synovial fibroblasts: differential expression with collagenase-1 (matrix metalloproteinase-1)". Biochemical Journal 331, nr 1 (1.04.1998): 341–46. http://dx.doi.org/10.1042/bj3310341.
Pełny tekst źródłaKoenning, Matthias, Xianlong Wang, Menuka Karki, Rahul Kumar Jangid, Sarah Kearns, Durga Nand Tripathi, Michael Cianfrocco i in. "Neuronal SETD2 activity links microtubule methylation to an anxiety-like phenotype in mice". Brain 144, nr 8 (20.05.2021): 2527–40. http://dx.doi.org/10.1093/brain/awab200.
Pełny tekst źródłaCiciarello, Marilena, Francesca Girotti, Darina Ocadlikova, Letizia Zannoni, Federica Ardizzoia, Cecilia Evangelisti, Cesare Rossi, Michele Cavo i Antonio Curti. "Interferon-Gamma Production By Dysplastic Cells Supports an Immune-Tolerant Bone Marrow Microenvironment in Myelodysplastic Syndrome Patients". Blood 144, Supplement 1 (5.11.2024): 6687. https://doi.org/10.1182/blood-2024-203447.
Pełny tekst źródłaFarrell, Jeffrey A., i Patrick H. O'Farrell. "From Egg to Gastrula: How the Cell Cycle Is Remodeled During theDrosophilaMid-Blastula Transition". Annual Review of Genetics 48, nr 1 (23.11.2014): 269–94. http://dx.doi.org/10.1146/annurev-genet-111212-133531.
Pełny tekst źródłaNorton, Kacie A., Ross Humphreys, Chelsey Weatherill, Kevin Duong, Vivian V. Nguyen, Arun Kommadath, Farshad Niri, Paul Stothard i Heather E. McDermid. "Subfertility in young male mice mutant for chromatin remodeller CECR2". Reproduction 163, nr 2 (1.02.2022): 69–83. http://dx.doi.org/10.1530/rep-19-0507.
Pełny tekst źródłaGonzález-Medina, Alberto, Esther Pazo, Elena Hidalgo i José Ayté. "SWI/SNF and RSC remodeler complexes bind to MBF-dependent genes". Cell Cycle 20, nr 24 (29.11.2021): 2652–61. http://dx.doi.org/10.1080/15384101.2021.2008203.
Pełny tekst źródłaLoesch, Robin, Linda Chenane i Sabine Colnot. "ARID2 Chromatin Remodeler in Hepatocellular Carcinoma". Cells 9, nr 10 (23.09.2020): 2152. http://dx.doi.org/10.3390/cells9102152.
Pełny tekst źródłaPoli, Jérôme, Susan M. Gasser i Manolis Papamichos-Chronakis. "The INO80 remodeller in transcription, replication and repair". Philosophical Transactions of the Royal Society B: Biological Sciences 372, nr 1731 (28.08.2017): 20160290. http://dx.doi.org/10.1098/rstb.2016.0290.
Pełny tekst źródłaSoutourina, Julie, Véronique Bordas-Le Floch, Gabrielle Gendrel, Amando Flores, Cécile Ducrot, Hélène Dumay-Odelot, Pascal Soularue i in. "Rsc4 Connects the Chromatin Remodeler RSC to RNA Polymerases". Molecular and Cellular Biology 26, nr 13 (1.07.2006): 4920–33. http://dx.doi.org/10.1128/mcb.00415-06.
Pełny tekst źródłaSubtil-Rodríguez, Alicia, Elena Vázquez-Chávez, María Ceballos-Chávez, Manuel Rodríguez-Paredes, José I. Martín-Subero, Manel Esteller i José C. Reyes. "The chromatin remodeller CHD8 is required for E2F-dependent transcription activation of S-phase genes". Nucleic Acids Research 42, nr 4 (20.11.2013): 2185–96. http://dx.doi.org/10.1093/nar/gkt1161.
Pełny tekst źródłaChutani, Namita, Sandhya Ragula, Khajamohiddin Syed i Suresh B. Pakala. "Novel Insights into the Role of Chromatin Remodeler MORC2 in Cancer". Biomolecules 13, nr 10 (15.10.2023): 1527. http://dx.doi.org/10.3390/biom13101527.
Pełny tekst źródłaSong, Yawei, Zhengyu Liang, Jie Zhang, Gongcheng Hu, Juehan Wang, Yaoyi Li, Rong Guo i in. "CTCF functions as an insulator for somatic genes and a chromatin remodeler for pluripotency genes during reprogramming". Cell Reports 39, nr 1 (kwiecień 2022): 110626. http://dx.doi.org/10.1016/j.celrep.2022.110626.
Pełny tekst źródłaYao, Wei, Devin A. King, Sean L. Beckwith, Graeme J. Gowans, Kuangyu Yen, Coral Zhou i Ashby J. Morrison. "The INO80 Complex Requires the Arp5-Ies6 Subcomplex for Chromatin Remodeling and Metabolic Regulation". Molecular and Cellular Biology 36, nr 6 (11.01.2016): 979–91. http://dx.doi.org/10.1128/mcb.00801-15.
Pełny tekst źródłaBogliotti, Y. S., L. B. Ferré, D. J. Humpal i P. J. Ross. "68 EPIGENETIC REMODELING OF HISTONE 3 MARKS DURING BOVINE PRE-IMPLANTATION DEVELOPMENT". Reproduction, Fertility and Development 26, nr 1 (2014): 148. http://dx.doi.org/10.1071/rdv26n1ab68.
Pełny tekst źródłaChohra, Ilyas, Keshi Chung, Subhajit Giri i Brigitte Malgrange. "ATP-Dependent Chromatin Remodellers in Inner Ear Development". Cells 12, nr 4 (7.02.2023): 532. http://dx.doi.org/10.3390/cells12040532.
Pełny tekst źródłaYu, Xiaoming, Xinchao Meng, Yutong Liu, Ning Li, Ai Zhang, Tian-Jing Wang, Lili Jiang i in. "The chromatin remodeler ZmCHB101 impacts expression of osmotic stress-responsive genes in maize". Plant Molecular Biology 97, nr 4-5 (28.06.2018): 451–65. http://dx.doi.org/10.1007/s11103-018-0751-8.
Pełny tekst źródłaMorillon, Antonin. "Is histone loss a common feature of DNA metabolism regulation?This paper is one of a selection of papers published in this Special Issue, entitled 27th International West Coast Chromatin and Chromosome Conference, and has undergone the Journal's usual peer review process." Biochemistry and Cell Biology 84, nr 4 (sierpień 2006): 450–52. http://dx.doi.org/10.1139/o06-070.
Pełny tekst źródłaFeng, Ying, Yan Zhang, Zhiqing Lin, Xiaolei Ye, Xue Lin, Lixiu Lv, Yi Lin, Shenfei Sun, Yun Qi i Xinhua Lin. "Chromatin remodeler Dmp18 regulates apoptosis by controlling H2Av incorporation in Drosophila imaginal disc development". PLOS Genetics 18, nr 9 (27.09.2022): e1010395. http://dx.doi.org/10.1371/journal.pgen.1010395.
Pełny tekst źródłaGidh-Jain, Madhavi, Boyu Huang, Praveer Jain i Nabil El-Sherif. "Differential Expression of Voltage-Gated K+Channel Genes in Left Ventricular Remodeled Myocardium After Experimental Myocardial Infarction". Circulation Research 79, nr 4 (październik 1996): 669–75. http://dx.doi.org/10.1161/01.res.79.4.669.
Pełny tekst źródłaPadilla-Benavides, Teresita, Monserrat Olea-Flores, Tapan Sharma, Sabriya A. Syed, Hanna Witwicka, Miriam D. Zuñiga-Eulogio, Kexin Zhang, Napoleon Navarro-Tito i Anthony N. Imbalzano. "Differential Contributions of mSWI/SNF Chromatin Remodeler Sub-Families to Myoblast Differentiation". International Journal of Molecular Sciences 24, nr 14 (9.07.2023): 11256. http://dx.doi.org/10.3390/ijms241411256.
Pełny tekst źródłaCauston, Helen C., Bing Ren, Sang Seok Koh, Christopher T. Harbison, Elenita Kanin, Ezra G. Jennings, Tong Ihn Lee, Heather L. True, Eric S. Lander i Richard A. Young. "Remodeling of Yeast Genome Expression in Response to Environmental Changes". Molecular Biology of the Cell 12, nr 2 (luty 2001): 323–37. http://dx.doi.org/10.1091/mbc.12.2.323.
Pełny tekst źródłaMuñoz, Sofía, Francesca Passarelli i Frank Uhlmann. "Conserved roles of chromatin remodellers in cohesin loading onto chromatin". Current Genetics 66, nr 5 (10.04.2020): 951–56. http://dx.doi.org/10.1007/s00294-020-01075-x.
Pełny tekst źródłaReddy, B. Ashok, Prashanth Kumar Bajpe, Andrew Bassett, Yuri M. Moshkin, Elena Kozhevnikova, Karel Bezstarosti, Jeroen A. A. Demmers, Andrew A. Travers i C. Peter Verrijzer. "Drosophila Transcription Factor Tramtrack69 Binds MEP1 To Recruit the Chromatin Remodeler NuRD". Molecular and Cellular Biology 30, nr 21 (23.08.2010): 5234–44. http://dx.doi.org/10.1128/mcb.00266-10.
Pełny tekst źródłaZhang, Heng, Brett Bishop, Whitney Ringenberg, William M. Muir i Joe Ogas. "The CHD3 Remodeler PICKLE Associates with Genes Enriched for Trimethylation of Histone H3 Lysine 27". Plant Physiology 159, nr 1 (27.03.2012): 418–32. http://dx.doi.org/10.1104/pp.112.194878.
Pełny tekst źródłaPoupeau, Audrey, Christian Garde, Karolina Sulek, Kiymet Citirikkaya, Jonas T. Treebak, Manimozhiyan Arumugam, David Simar, Louise E. Olofsson, Fredrik Bäckhed i Romain Barrès. "Genes controlling the activation of natural killer lymphocytes are epigenetically remodeled in intestinal cells from germ‐free mice". FASEB Journal 33, nr 2 (10.10.2018): 2719–31. http://dx.doi.org/10.1096/fj.201800787r.
Pełny tekst źródłaMelvin, Andrew, Sharon Mudie i Sonia Rocha. "The chromatin remodeler ISWI regulates the cellular response to hypoxia: role of FIH". Molecular Biology of the Cell 22, nr 21 (listopad 2011): 4171–81. http://dx.doi.org/10.1091/mbc.e11-02-0163.
Pełny tekst źródłaCrosswhite, Patrick L. "ATP-dependent chromatin remodeling complexes in embryonic vascular development and hypertension". American Journal of Physiology-Heart and Circulatory Physiology 317, nr 3 (1.09.2019): H575—H580. http://dx.doi.org/10.1152/ajpheart.00147.2019.
Pełny tekst źródłaZhao, Haixin, Zhijun Han, Xinyuan Liu, Junjie Gu, Fan Tang, Gang Wei i Ying Jin. "The chromatin remodeler Chd4 maintains embryonic stem cell identity by controlling pluripotency- and differentiation-associated genes". Journal of Biological Chemistry 292, nr 20 (15.03.2017): 8507–19. http://dx.doi.org/10.1074/jbc.m116.770248.
Pełny tekst źródłaLi, Shitao, Lingyan Wang, Michael Berman i Martin Dorf. "Mapping a dynamic innate immunity protein interaction network regulating type I interferon production (108.2)". Journal of Immunology 188, nr 1_Supplement (1.05.2012): 108.2. http://dx.doi.org/10.4049/jimmunol.188.supp.108.2.
Pełny tekst źródłaWalter, Korden, Constanze Bonifer i Hiromi Tagoh. "Stem cell–specific epigenetic priming and B cell–specific transcriptional activation at the mouse Cd19 locus". Blood 112, nr 5 (1.09.2008): 1673–82. http://dx.doi.org/10.1182/blood-2008-02-142786.
Pełny tekst źródłaSperlazza, Justin, Mohamed Rahmani, Jason Beckta, Mandy Aust, Elisa Hawkins, Shou Zhen Wang, Sheng Zu Zhu i in. "Depletion of the chromatin remodeler CHD4 sensitizes AML blasts to genotoxic agents and reduces tumor formation". Blood 126, nr 12 (17.09.2015): 1462–72. http://dx.doi.org/10.1182/blood-2015-03-631606.
Pełny tekst źródłaQiu, Hongfang, Emily Biernat, Chhabi K. Govind, Yashpal Rawal, Răzvan V. Chereji, David J. Clark i Alan G. Hinnebusch. "Chromatin remodeler Ino80C acts independently of H2A.Z to evict promoter nucleosomes and stimulate transcription of highly expressed genes in yeast". Nucleic Acids Research 48, nr 15 (14.07.2020): 8408–30. http://dx.doi.org/10.1093/nar/gkaa571.
Pełny tekst źródłaTakahashi, I., M. Nishimura, K. Onodera, J. W. Bae, H. Mitani, M. Okazaki, Y. Sasano i H. Mitani. "Expression of MMP-8 and MMP-13 Genes in the Periodontal Ligament during Tooth Movement in Rats". Journal of Dental Research 82, nr 8 (sierpień 2003): 646–51. http://dx.doi.org/10.1177/154405910308200815.
Pełny tekst źródłaZhang, Lijun, Zhenning Dai, Shanshan Shi, Zi Yan, Jiaxin Yang, Wanting Xue, Yunhao He i in. "SIRT3 and SIRT4 double-genes remodeled the mitochondrial network to induce hepatocellular carcinoma cell line differentiation and suppress malignant phenotypes". Biochemical Pharmacology 223 (maj 2024): 116168. http://dx.doi.org/10.1016/j.bcp.2024.116168.
Pełny tekst źródłaIacobas, Dumitru Andrei, Ehiguese Alade Obiomon i Sanda Iacobas. "Genomic Fabrics of the Excretory System’s Functional Pathways Remodeled in Clear Cell Renal Cell Carcinoma". Current Issues in Molecular Biology 45, nr 12 (24.11.2023): 9471–99. http://dx.doi.org/10.3390/cimb45120594.
Pełny tekst źródła