Gotowa bibliografia na temat „Remodelled genes”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Remodelled genes”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Remodelled genes"
Germain, Adeline, Jeanne-Marie Perotin, Gonzague Delepine, Myriam Polette, Gaëtan Deslée i Valérian Dormoy. "Whole-Exome Sequencing of Bronchial Epithelial Cells Reveals a Genetic Print of Airway Remodelling in COPD". Biomedicines 10, nr 7 (15.07.2022): 1714. http://dx.doi.org/10.3390/biomedicines10071714.
Pełny tekst źródłaLi, Mengyao, Su Mon Aye, Maizbha Uddin Ahmed, Mei-Ling Han, Chen Li, Jiangning Song, John D. Boyce i in. "Pan-transcriptomic analysis identified common differentially expressed genes of Acinetobacter baumannii in response to polymyxin treatments". Molecular Omics 16, nr 4 (2020): 327–38. http://dx.doi.org/10.1039/d0mo00015a.
Pełny tekst źródłaOu, Yaqing, i James O. McInerney. "Eukaryote Genes Are More Likely than Prokaryote Genes to Be Composites". Genes 10, nr 9 (28.08.2019): 648. http://dx.doi.org/10.3390/genes10090648.
Pełny tekst źródłaKuleesha, Yadav, Wee Choo Puah i Martin Wasser. "A model of muscle atrophy based on live microscopy of muscle remodelling in Drosophila metamorphosis". Royal Society Open Science 3, nr 2 (luty 2016): 150517. http://dx.doi.org/10.1098/rsos.150517.
Pełny tekst źródłaWang, Yuzhe, Shiyu Li, Mengge Liu, Jiajia Wang, Zhengbin Fei, Feng Wang, Zhenyou Jiang, Wenhua Huang i Hanxiao Sun. "Rhodosporidium toruloides sir2-like genes remodelled the mitochondrial network to improve the phenotypes of ageing cells". Free Radical Biology and Medicine 134 (kwiecień 2019): 64–75. http://dx.doi.org/10.1016/j.freeradbiomed.2018.12.036.
Pełny tekst źródłaAhmedien, Diaa Ahmed Mohamed. "Bio-pixels: A stem cell-based interactive–generative interface designed to redefine technologies of self-making in new media arts". Convergence: The International Journal of Research into New Media Technologies 26, nr 5-6 (29.11.2019): 1367–90. http://dx.doi.org/10.1177/1354856519890096.
Pełny tekst źródłaDalla Torre, Marco, Daniele Pittari, Alessandra Boletta, Laura Cassina, Roberto Sitia i Tiziana Anelli. "Mitochondria remodeling during endometrial stromal cell decidualization". Life Science Alliance 7, nr 12 (4.10.2024): e202402627. http://dx.doi.org/10.26508/lsa.202402627.
Pełny tekst źródłaReik, Wolf, Fatima Santos, Kohzoh Mitsuya, Hugh Morgan i Wendy Dean. "Epigenetic asymmetry in the mammalian zygote and early embryo: relationship to lineage commitment?" Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 358, nr 1436 (29.08.2003): 1403–9. http://dx.doi.org/10.1098/rstb.2003.1326.
Pełny tekst źródłaChen, Xinxin, Jun Wang, Donna Woltring, Steve Gerondakis i M. Frances Shannon. "Histone Dynamics on the Interleukin-2 Gene in Response to T-Cell Activation". Molecular and Cellular Biology 25, nr 8 (15.04.2005): 3209–19. http://dx.doi.org/10.1128/mcb.25.8.3209-3219.2005.
Pełny tekst źródłaPRAJAPATI, SURENDRA K., RICHARD CULLETON i OM P. SINGH. "Protein trafficking in Plasmodium falciparum-infected red cells and impact of the expansion of exported protein families". Parasitology 141, nr 12 (30.07.2014): 1533–43. http://dx.doi.org/10.1017/s0031182014000948.
Pełny tekst źródłaRozprawy doktorskie na temat "Remodelled genes"
Sussfeld, Duncan. "Identifying remote homology and gene remodelling using network-based approaches". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASL112.
Pełny tekst źródłaThe ever-increasing accumulation of genomic and metagenomic data calls for new methodological developments in bioinformatics, in order to characterise evolutionary phenomena as a whole with better accuracy. In particular, some of the canonical methods to study the evolution of genes and gene families may be ill-suited when the relatedness of sequences is only partially supported. For instance, the definition and reconstruction of gene families face the hurdle of remote homology, which falls beneath the detection thresholds of sequence alignments. Likewise, combinatorial mechanisms of evolution, such as gene fusion and gene fission, challenge the purely tree-based representations of gene family evolution. The use of complementary methods based on sequence similarity networks allows us to circumvent some of these shortcomings, by offering a more holistic representation of similarities between genes. The detection and analysis of highly divergent homologues of strongly conserved families in environmental sequence datasets, in particular, is facilitated by iterative homology search protocols based on networks. This iterative mining of metagenomes reveals an immense diversity of environmental variants in these families, diverging from the known diversity in primary sequence as well as in the tertiary structure of the proteins they encode. It is thus able to suggest possible directions of future explorations into microbial dark matter. Furthermore, by factoring in relationships of partial homology between gene sequences, sequence similarity networks allow for a systematic identification of gene fusion and fission events. It thus becomes possible to assess the effects of these processes on the evolution of biological lineages of interest, enabling us for instance to compare the role that they played in the emergence of complex multicellular phenotypes between several such lineages. More generally, these network-based approaches illustrate the benefits of taking a plurality of models into account, in order to study a broader range of evolutionary processes
Kreher, Judith [Verfasser], i Alexander [Akademischer Betreuer] Brehm. "Function of the ATP-dependent chromatin remodeler Mi-2 in the regulation of ecdysone dependent genes in Drosophila melanogaster / Judith Kreher. Betreuer: Alexander Brehm". Marburg : Philipps-Universität Marburg, 2015. http://d-nb.info/1070623962/34.
Pełny tekst źródła(6635906), Erin L. Sorlien. "The Chromatin Remodeler and Tumor Suppress Chd5 Promotes Expression and Processing of Transcripts During Development of the Zebrafish Neural System". Thesis, 2019.
Znajdź pełny tekst źródłaKsiążki na temat "Remodelled genes"
Yang, Jin, Pei Han, Wei Li i Ching-Pin Chang. Epigenetics and post-transcriptional regulation of cardiovascular development. Redaktorzy José Maria Pérez-Pomares, Robert G. Kelly, Maurice van den Hoff, José Luis de la Pompa, David Sedmera, Cristina Basso i Deborah Henderson. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198757269.003.0032.
Pełny tekst źródłaCzęści książek na temat "Remodelled genes"
Cui, Guofei, Qing Dong, Kexin Gai i Shaohua Qi. "Chromatin Dynamics: Chromatin Remodeler, Epigenetic Modification and Diseases". W Epigenetics - Regulation and New Perspectives [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.108385.
Pełny tekst źródłaFuret, Francois. "The French Revolution or Pure Democracy". W Rewriting the French Revolution, 33–45. Oxford University PressOxford, 1991. http://dx.doi.org/10.1093/oso/9780198219767.003.0002.
Pełny tekst źródłaPal, Neeraj, Dinesh Kumar Saini i Sundip Kumar. "Breaking Yield Ceiling in Wheat: Progress and Future Prospects". W Wheat [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.102919.
Pełny tekst źródłaStreszczenia konferencji na temat "Remodelled genes"
Dey, Nandini, Jennifer C. Aske, Ethan Thompson, Luis Rojas-Espaillat, David Starks i Pradip De. "Abstract 1427: Co-alteration of the nucleosome remodeler, ARID1A with the PI3K-pathway genes: A signaling opportunity in ovarian cancers". W Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-1427.
Pełny tekst źródła