Artykuły w czasopismach na temat „Relativity (Physics)”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Relativity (Physics).

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Relativity (Physics)”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Hammond, John L. "Relativity and relativism". American Journal of Physics 53, nr 9 (wrzesień 1985): 873–74. http://dx.doi.org/10.1119/1.14354.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Galison, P. "PHYSICS: Astronomers' Relativity". Science 315, nr 5814 (16.02.2007): 942–43. http://dx.doi.org/10.1126/science.1134451.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Girelli, Florian, i Etera R. Livine. "Physics of deformed special relativity: relativity principle revisited". Brazilian Journal of Physics 35, nr 2b (czerwiec 2005): 432–38. http://dx.doi.org/10.1590/s0103-97332005000300011.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Baylis, W. E. "Relativity in introductory physics". Canadian Journal of Physics 82, nr 11 (1.11.2004): 853–73. http://dx.doi.org/10.1139/p04-058.

Pełny tekst źródła
Streszczenie:
A century after its formulation by Einstein, it is time to incorporate special relativity early in the physics curriculum. The approach advocated here employs a simple algebraic extension of vector formalism that generates Minkowski spacetime, displays covariant symmetries, and enables calculations of boosts and spatial rotations without matrices or tensors. The approach is part of a comprehensive geometric algebra with applications in many areas of physics, but only an intuitive subset is needed at the introductory level. The approach and some of its extensions are given here and illustrated with insights into the geometry of spacetime. PACS Nos.: 03.30.+p, 01.40.Gm, 03.50.De, 02.10.Hh
Style APA, Harvard, Vancouver, ISO itp.
5

OZIEWICZ, ZBIGNIEW. "RELATIVITY GROUPOID INSTEAD OF RELATIVITY GROUP". International Journal of Geometric Methods in Modern Physics 04, nr 05 (sierpień 2007): 739–49. http://dx.doi.org/10.1142/s0219887807002260.

Pełny tekst źródła
Streszczenie:
In 1908, Minkowski [13] used space-like binary velocity-field of a medium, relative to an observer. In 1974, Hestenes introduced, within a Clifford algebra, an axiomatic binary relative velocity as a Minkowski bivector [7, 8]. We propose to consider binary relative velocity as a traceless nilpotent endomorphism in an operator algebra. Any concept of a binary axiomatic relative velocity made possible the replacement of the Lorentz relativity group by the relativity groupoid. The relativity groupoid is a category of massive bodies in mutual relative motions, where a binary relative velocity is interpreted as a categorical morphism with the associative addition. This associative addition is to be contrasted with non-associative addition of (ternary) relative velocities in isometric special relativity (loop structure). We consider an algebra of many time-plus-space splits, as an operator algebra generated by idempotents. The kinematics of relativity groupoid is ruled by associative Frobenius operator algebra, whereas the dynamics of categorical relativity needs the non-associative Frölicher–Richardson operator algebra. The Lorentz covariance is the cornerstone of physical theory. Observer-dependence within relativity groupoid, and the Lorentz-covariance within the Lorentz relativity group, are different concepts. Laws of Physics could be observer-free, rather than Lorentz-invariant.
Style APA, Harvard, Vancouver, ISO itp.
6

Barbour, Julian, Brendan Z. Foster i Niall $Oacute$ Murchadha. "Relativity without relativity". Classical and Quantum Gravity 19, nr 12 (31.05.2002): 3217–48. http://dx.doi.org/10.1088/0264-9381/19/12/308.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Taylor, Emory. "Falsification of Einstein’s relativity". Physics Essays 34, nr 4 (24.12.2021): 578–81. http://dx.doi.org/10.4006/0836-1398-34.4.578.

Pełny tekst źródła
Streszczenie:
In 1915, Einstein published general relativity. In 1916, he published a German language book about relativity, which contained his marble table thought experiment for explaining a continuum. Without realizing it, Einstein introduced a quantized two-dimensional discontinuum geometry and inadvertently falsified the marble table thought experiment continuum, which falsified relativity. The foundations of physics do not now (and never did) include a fundamentally sound relativistic theory to account for macroscopic phenomena. It is well known the success of relativity and its singularity problem indicate general relativity is a first approximation of a more fundamental theory. Combine that indication with the falsification of relativity and it is apparent, without speculation, that relativity is now and always was a first approximation of a more fundamental theory. A possible way forward to the more fundamental theory is developing a discontinuum physics based on the quantized two-dimensional discontinuum geometry or an algebraic version of it. Such discontinuum physics is not presented, because it is beyond the scope of this paper.
Style APA, Harvard, Vancouver, ISO itp.
8

ROSENBLUM, ARNOLD. "New Ideas in Relativity Physics." Annals of the New York Academy of Sciences 571, nr 1 Texas Symposi (grudzień 1989): 276–87. http://dx.doi.org/10.1111/j.1749-6632.1989.tb50515.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Mayants, Lazar. "Einstein's relativity and quantum physics". International Journal of Theoretical Physics 34, nr 8 (sierpień 1995): 1575–85. http://dx.doi.org/10.1007/bf00676269.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Griffin, David Ray. "Hartshorne, God, and Relativity Physics". Process Studies 21, nr 2 (1992): 85–112. http://dx.doi.org/10.5840/process199221230.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Griffin, David Ray. "Hartshorne, God, and Relativity Physics". Process Studies 21, nr 2 (1.07.1992): 85–112. http://dx.doi.org/10.2307/44798682.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Ruggiero, Matteo Luca. "Rotation Effects in Relativity". Universe 6, nr 12 (27.11.2020): 224. http://dx.doi.org/10.3390/universe6120224.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Khatri, Kamal B. "Albert Einstein and Relativity". Himalayan Physics 1 (29.07.2011): 99–100. http://dx.doi.org/10.3126/hj.v1i0.5193.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Anderson, Edward. "Strong-Coupled Relativity Without Relativity". General Relativity and Gravitation 36, nr 2 (luty 2004): 255–76. http://dx.doi.org/10.1023/b:gerg.0000010474.63835.2c.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Gherdjikov, Serghey. "Language Relativity". Balkan Journal of Philosophy 11, nr 2 (2019): 133–44. http://dx.doi.org/10.5840/bjp201911214.

Pełny tekst źródła
Streszczenie:
We produce language forms via their relations in coordinate systems: languages. That is virtual language relativity. Languages are related to phenomena and work in the real life of communities. That is real language relativity. We use languages via symbolic behaviors, living in human communities. Relativism collapses at the level of successful exchange of experience between humans belonging to distant cultures. Relativism is a stance of not recognizing the real relatedness of all languages to one and the same human form and world. Absolutism (Universalism) is a stance of not recognizing relativity as definiteness, that is, the virtual interrelatedness of all languages. Languages are shaped by human life processes. We follow the path from “local languages,” which are analogous to ‘inertial systems’, (this represents ‘virtual relativity,’ which is analogous to special relativity in physics) to living people talking about one shared sensual world (this represents ‘real relativity’).
Style APA, Harvard, Vancouver, ISO itp.
16

Bussey, Peter J. "Relativity Made Relatively Easy, by Andrew M. Steane". Contemporary Physics 54, nr 2 (kwiecień 2013): 124. http://dx.doi.org/10.1080/00107514.2013.800151.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

YEOM, Dong-han. "The Beginning of General Relativity". Physics and High Technology 30, nr 6 (30.06.2021): 30–35. http://dx.doi.org/10.3938/phit.30.020.

Pełny tekst źródła
Streszczenie:
In this article, we briefly review the motivations behind general relativity. We first discuss the basics of classical physics, including the equations of motion and the field equations. Newtonian mechanics assumes absolute space and time, but this can be philosophically unnatural. Einstein constructed a general theory of classical physics with covariance for the general choice of coordinate systems. This theory is known as general relativity. Finally, we briefly mention how this theory is completed, how this theory is verified, and what can be the future of general relativity.
Style APA, Harvard, Vancouver, ISO itp.
18

Rindler, Wolfgang. "General relativity before special relativity: An unconventional overview of relativity theory". American Journal of Physics 62, nr 10 (październik 1994): 887–93. http://dx.doi.org/10.1119/1.17734.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Crease, Robert P. "Relativity: A steep ascent of physics". Nature 549, nr 7672 (21.09.2017): 331–32. http://dx.doi.org/10.1038/549331a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Grieser, R., T. Kühl i G. Huber. "Using atomic physics to verify relativity". American Journal of Physics 63, nr 7 (lipiec 1995): 665–68. http://dx.doi.org/10.1119/1.17833.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Del Santo, Flavio, i Nicolas Gisin. "The Relativity of Indeterminacy". Entropy 23, nr 10 (11.10.2021): 1326. http://dx.doi.org/10.3390/e23101326.

Pełny tekst źródła
Streszczenie:
A long-standing tradition, largely present in both the physical and the philosophical literature, regards the advent of (special) relativity—with its block-universe picture—as the failure of any indeterministic program in physics. On the contrary, in this paper, we note that upholding reasonable principles of finiteness of information hints at a picture of the physical world that should be both relativistic and indeterministic. We thus rebut the block-universe picture by assuming that fundamental indeterminacy itself should also be regarded as a relative property when considered in a relativistic scenario. We discuss the consequence that this view may have when correlated randomness is introduced, both in the classical case and in the quantum one.
Style APA, Harvard, Vancouver, ISO itp.
22

Rössler, Otto E., Hans H. Diebner i Werner Pabst. "Micro Relativity". Zeitschrift für Naturforschung A 52, nr 8-9 (1.09.1997): 593–99. http://dx.doi.org/10.1515/zna-1997-8-908.

Pełny tekst źródła
Streszczenie:
Abstract A new synthesis based on microscopic classical thinking is attempted in the spirit of the molecular-dynamics-simulation (MDS) paradigm. Leibniz’s idea that joint scale transformations cancel out is invoked. Boltzmann discovered that a time reversal in the whole universe is undetectable from the inside. As a corollary, objective micro time reversals occur in the interface between a subsystem and the rest of the universe, whenever the former undergoes a time reversal. This is shown to occur in a generic class of Hamiltonian systems. The “microinterface” arrived at generalizes the macro frame of relativity to the micro realm. Micro relativity comprises Bohr’s idea of an observer-relative complementarity and Everett’s idea of an observer-relative state. As in relativity proper, a multiplicity of worlds (cuts) exist. For the inhabitants of an artificial MDS universe, therefore a radically new option is available: world change technology.
Style APA, Harvard, Vancouver, ISO itp.
23

Sachs, M. "Onμ ±↦e±+2γ in general relativityin general relativity". Il Nuovo Cimento A 91, nr 3 (luty 1986): 241–46. http://dx.doi.org/10.1007/bf02819301.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Klioner, S. A. "Relativistic astrometry and astrometric relativity". Proceedings of the International Astronomical Union 3, S248 (październik 2007): 356–62. http://dx.doi.org/10.1017/s174392130801956x.

Pełny tekst źródła
Streszczenie:
AbstractThe interplay between modern astrometry and gravitational physics is very important for the progress in both these fields. Below some threshold of accuracy, Newtonian physics fails to describe observational data and the Einstein's relativity theory must be used to model the data adequately. Many high-accuracy astronomical techniques have already passed this threshold. Moreover, modern astronomical observations cannot be adequately modeled if relativistic effects are considered as small corrections to Newtonian models. The whole way of thinking must be made compatible with relativity: this starts with the concepts of time, space and reference systems.An overview of the standard general-relativistic framework for modeling of high-accuracy astronomical observations is given. Using this framework one can construct a standard set of building blocks for relativistic models. A suitable combination of these building blocks can be used to formulate a model for any given type of astronomical observations. As an example the problem of four dimensional solar system ephemerides is exposed in more detail. The limits of the present relativistic formulation are also briefly summarized.On the other hand, high-accuracy astronomical observations play important role for gravitational physics itself, providing the latter with crucial observational tests. Perspectives for these astronomical tests for the next 15 years are summarized.
Style APA, Harvard, Vancouver, ISO itp.
25

Israel, Werner. "General relativity: progress, problems, and prospects". Canadian Journal of Physics 63, nr 1 (1.01.1985): 34–43. http://dx.doi.org/10.1139/p85-005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Anderson, Edward, i Julian Barbour. "Interacting vector fields in relativity without relativity". Classical and Quantum Gravity 19, nr 12 (31.05.2002): 3249–61. http://dx.doi.org/10.1088/0264-9381/19/12/309.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Carmeli, M. "Cosmological relativity: A special relativity for cosmology". Foundations of Physics 25, nr 7 (lipiec 1995): 1029–40. http://dx.doi.org/10.1007/bf02059524.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Avagyan, Dr Slavik. "THE COLLAPSE OF THE THEORY OF RELATIVITY". EPH - International Journal of Applied Science 2, nr 2 (27.06.2016): 1–5. http://dx.doi.org/10.53555/eijas.v2i2.9.

Pełny tekst źródła
Streszczenie:
The basis of Einstein's relativity theory is the Michelson-Morley experiment. In this paper, based on fundamental laws of physics and mathematics prove the absurdity (inconsistency) of the Michelson-Morley experiment, as it ignores the basic laws of physics.
Style APA, Harvard, Vancouver, ISO itp.
29

Xiaogang, Ruan. "Dualistic relativity: Unification of Einstein’s Special Relativity and de Broglie’s Matter–Wave Theory". Annals of Mathematics and Physics 5, nr 1 (18.06.2022): 055–67. http://dx.doi.org/10.17352/amp.000040.

Pełny tekst źródła
Streszczenie:
In Hawking’s view physics has been broken up into many partial theories, while the ultimate goal of physicists is to unify them. The two basic theories of 20th-century physics, relativity theory and quantum theory, are based on completely different logical prerequisites and exactly separate: matter is described as particles in relativity theory and as waves in quantum mechanics. Here, based on the identical logical prerequisites, we unify Einstein’s special relativity (SR) and de Broglie’s matter-wave theory (MWT) into the theory of dualistic relativity (DR), taking a significant step toward the unification of relativity and quantum mechanics. From the definition of time, we derive the Lorentz transformation in differential form and establish the theory of DR, which generalizes the wave-particle duality of matter motion, and uniformly derives Einstein’s formula E=mc2, Planck’s equation E=hf, and de Broglie’s relation λ=h/p. From the logical prerequisite completely different from Einstein’s hypothesis of the invariance of light speed and along the logical path completely different from Einstein’s SR, we have deduced the whole theoretical system of Einstein’s SR and de Broglie’s MWT. In the theory of DR, the two great formulae originally separated, Einstein’s formula E=mc2 and Planck’s equation E=hf, become a pair of twin formulae unified in an identical theoretical system.
Style APA, Harvard, Vancouver, ISO itp.
30

Perelman, Carlos Castro. "Thermal relativity, corrections to black hole entropy, Born’s reciprocal relativity theory, and quantum gravity". Canadian Journal of Physics 97, nr 12 (grudzień 2019): 1309–16. http://dx.doi.org/10.1139/cjp-2019-0034.

Pełny tekst źródła
Streszczenie:
Starting with a brief description of Born’s reciprocal relativity theory (BRRT), based on a maximal proper force, maximal speed of light, and inertial and non-inertial observers, we derive the exact thermal relativistic corrections to the Schwarzschild, Reissner–Nordstrom, and Kerr–Newman black hole entropies and provide a detailed analysis of the many novel applications and consequences to the physics of black holes, quantum gravity, minimal area, minimal mass, Yang–Mills mass gap, information paradox, arrow of time, dark matter, and dark energy. We finish by outlining our proposal towards a space–time–matter unification program where matter can be converted into spacetime quanta and vice versa.
Style APA, Harvard, Vancouver, ISO itp.
31

Mansfield, Victor. "Relativity in Madhyamika Buddhism and Modern Physics". Philosophy East and West 40, nr 1 (styczeń 1990): 59. http://dx.doi.org/10.2307/1399549.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Ferreira, Pedro. "Physics: One hundred years of general relativity". Nature 520, nr 7549 (kwiecień 2015): 621–22. http://dx.doi.org/10.1038/520621a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Dixon, W. G., i Mark A. Peterson. "Special Relativity, the Foundation of Macroscopic Physics". American Journal of Physics 53, nr 11 (listopad 1985): 1117. http://dx.doi.org/10.1119/1.14056.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Hambye, T., R. B. Mann i U. Sarkar. "Test of special relativity from K physics". Physics Letters B 421, nr 1-4 (marzec 1998): 105–8. http://dx.doi.org/10.1016/s0370-2693(98)00016-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Carminati, Lionel, Bruno Iochum, Daniel Kastler i Thomas Schücker. "Relativity, noncommutative geometry, renormalization and particle physics". Reports on Mathematical Physics 43, nr 1-2 (luty 1999): 53–71. http://dx.doi.org/10.1016/s0034-4877(99)80015-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Resnick, Andrew. "Introductory quantum physics and relativity, 2nd edition". Contemporary Physics 60, nr 1 (2.01.2019): 73. http://dx.doi.org/10.1080/00107514.2019.1567597.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Bekenstein, Jacob. "Trouble with physics: Time to discard relativity?" New Scientist 217, nr 2906 (marzec 2013): 42. http://dx.doi.org/10.1016/s0262-4079(13)60568-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Hartle, James B. "General relativity in the undergraduate physics curriculum". American Journal of Physics 74, nr 1 (styczeń 2006): 14–21. http://dx.doi.org/10.1119/1.2110581.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Squires, Euan J. "Special relativity and realism in quantum physics". Physics Letters A 145, nr 6-7 (kwiecień 1990): 297–98. http://dx.doi.org/10.1016/0375-9601(90)90937-j.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Saunders, Simon. "How Relativity Contradicts Presentism". Royal Institute of Philosophy Supplement 50 (marzec 2002): 277–92. http://dx.doi.org/10.1017/s1358246100010602.

Pełny tekst źródła
Streszczenie:
But this picture of a ‘block universe’, composed of a timeless web of ‘world-lines’ in a four-dimensional space, however strongly suggested by the theory of relativity, is a piece of gratuitous metaphysics. Since the concept of change, of something happening, is an inseparable component of the common-sense concept of time and a necessary component of the scientist's view of reality, it is quite out of the question that theoretical physics should require us to hold the Eleatic view that nothing happens in ‘the objective world’. Here, as so often in the philosophy of science, a useful limitation in the form of representation is mistaken for a deficiency of the universe (Black, 1962).
Style APA, Harvard, Vancouver, ISO itp.
41

Smit, Jaroslav. "Materialistic Relativity." Physics Essays 3, nr 2 (1.06.1990): 183–84. http://dx.doi.org/10.4006/1.3033440.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Crease, Robert P. "General relativity". Physics World 18, nr 12 (grudzień 2005): 16–17. http://dx.doi.org/10.1088/2058-7058/18/12/24.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Wald, Robert M., i James W. York. "General Relativity". Physics Today 40, nr 5 (maj 1987): 94–95. http://dx.doi.org/10.1063/1.2820032.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Mook, Delo E., Thomas Vargish i Edwin F. Taylor. "Inside Relativity". Physics Today 42, nr 9 (wrzesień 1989): 90. http://dx.doi.org/10.1063/1.2811153.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Goldberg, Stanley, i Robert Weinstock. "Understanding Relativity". American Journal of Physics 53, nr 4 (kwiecień 1985): 378–79. http://dx.doi.org/10.1119/1.14174.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Wald, Robert M., i Hans C. Ohanian. "General Relativity". American Journal of Physics 53, nr 9 (wrzesień 1985): 923–24. http://dx.doi.org/10.1119/1.14379.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Zhao, Liu. "Thermal Relativity". Communications in Theoretical Physics 56, nr 6 (grudzień 2011): 1052–56. http://dx.doi.org/10.1088/0253-6102/56/6/14.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Zheng, Shuangcai. "Special Relativity of Angle (Special Relativity of Rotation)". Physics Essays 7, nr 1 (marzec 1994): 34–46. http://dx.doi.org/10.4006/1.3029110.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Savage, C. M., A. Searle i L. McCalman. "Real Time Relativity: Exploratory learning of special relativity". American Journal of Physics 75, nr 9 (wrzesień 2007): 791–98. http://dx.doi.org/10.1119/1.2744048.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Pepino, Ron A., i Risley W. Mabile. "A Misconception Regarding the Einstein Equivalence Principle and a Possible Cure Using the Twin Paradox". Physics Teacher 61, nr 2 (luty 2023): 118–21. http://dx.doi.org/10.1119/5.0075153.

Pełny tekst źródła
Streszczenie:
It has long been suspected by general relativists that physicists who do not specialize in general relativity (GR) believe that special relativity (SR) is incapable of modeling dynamics within accelerated reference frames. Consequently, many physicists may conclude that certain phenomena, such as time dilation due to acceleration, can only be described with GR. The fact of the matter is, as long as spacetime is flat, SR is fully capable of describing the dynamics of accelerated reference frames. In the classic textbook Gravitation, the authors state that “special relativity was developed precisely to predict the physics of accelerated objects.” To quote Sean Carroll in his textbook Spacetime and Geometry, “The notion of acceleration in special relativity has a bad reputation, for no good reason.” Finally, in a quote that drives the main point of this article home, the late general relativist Alfred Schild once said, “A good many believe that [the twin] paradox can only be resolved by the general theory of relativity. They find great comfort in this because they don’t know any general relativity.”
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii