Artykuły w czasopismach na temat „Relativistic Optics”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Relativistic Optics.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Relativistic Optics”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Keitel, Christoph H. "Relativistic quantum optics". Contemporary Physics 42, nr 6 (listopad 2001): 353–63. http://dx.doi.org/10.1080/00107510110084723.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Miron, Radu, i Tomoaki Kawaguchi. "Relativistic geometrical optics". International Journal of Theoretical Physics 30, nr 11 (listopad 1991): 1521–43. http://dx.doi.org/10.1007/bf00675616.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Umstadter, Donald, Szu-yuan Chen, Robert Wagner, Anatoly Maksimchuk i Gennady Sarkisov. "Nonlinear optics in relativistic plasmas". Optics Express 2, nr 7 (30.03.1998): 282. http://dx.doi.org/10.1364/oe.2.000282.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Mourou, Gerard A., Toshiki Tajima i Sergei V. Bulanov. "Optics in the relativistic regime". Reviews of Modern Physics 78, nr 2 (28.04.2006): 309–71. http://dx.doi.org/10.1103/revmodphys.78.309.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Miron, R., i G. Zet. "Relativistic optics of nondispersive media". Foundations of Physics 25, nr 9 (wrzesień 1995): 1371–82. http://dx.doi.org/10.1007/bf02055336.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

KIM, Chul Min, i Chang Hee NAM. "Relativistic Optics Explored with PW Lasers". Physics and High Technology 24, nr 4 (30.04.2015): 9. http://dx.doi.org/10.3938/phit.24.016.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Thompson, Robert T. "General relativistic contributions in transformation optics". Journal of Optics 14, nr 1 (15.12.2011): 015102. http://dx.doi.org/10.1088/2040-8978/14/1/015102.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Zet, G., i V. Manta. "Post-Newtonian estimation in relativistic optics". International Journal of Theoretical Physics 32, nr 6 (czerwiec 1993): 1013–20. http://dx.doi.org/10.1007/bf01215307.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Janner, A. "Looking for a relativistic crystal optics". Ferroelectrics 161, nr 1 (listopad 1994): 191–206. http://dx.doi.org/10.1080/00150199408213367.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Abe, Y., K. F. F. Law, Ph Korneev, S. Fujioka, S. Kojima, S. H. Lee, S. Sakata i in. "Whispering Gallery Effect in Relativistic Optics". JETP Letters 107, nr 6 (marzec 2018): 351–54. http://dx.doi.org/10.1134/s0021364018060012.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Umstadter, D., i T. B. Norris. "Nonlinear Optics With Relativistic Electrons [Guest Editorial]". IEEE Journal of Quantum Electronics 33, nr 11 (listopad 1997): 1877–78. http://dx.doi.org/10.1109/jqe.1997.641304.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Mourou, Gérard A., i Victor Yanovsky. "Relativistic Optics: A Gateway to Attosecond Physics". Optics and Photonics News 15, nr 5 (3.05.2004): 40. http://dx.doi.org/10.1364/opn.15.5.000040.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Mourou, Gérard A. "Ultraintense lasers: relativistic nonlinear optics and applications". Comptes Rendus de l'Académie des Sciences - Series IV - Physics 2, nr 10 (grudzień 2001): 1407–14. http://dx.doi.org/10.1016/s1296-2147(01)01278-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Atakishiyev, Natig M., Wolfgang Lassner i Kurt Bernardo Wolf. "The relativistic coma aberration. I. Geometrical optics". Journal of Mathematical Physics 30, nr 11 (listopad 1989): 2457–62. http://dx.doi.org/10.1063/1.528524.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Zheng, Qianbing, i Takayoshi Kobayashi. "Quantum Optics as a Relativistic Theory of Light". Physics Essays 9, nr 3 (wrzesień 1996): 447–59. http://dx.doi.org/10.4006/1.3029255.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Kaplan, A. E. "Relativistic nonlinear optics of a single cyclotron electron". Physical Review Letters 56, nr 5 (3.02.1986): 456–59. http://dx.doi.org/10.1103/physrevlett.56.456.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Ribeiro, M. A., i C. R. Paiva. "Relativistic optics in moving media with spacetime algebra". European Physical Journal Applied Physics 49, nr 3 (3.02.2010): 33003. http://dx.doi.org/10.1051/epjap/2009146.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Echkina, E. Yu, i I. N. Inovenkov. "Current State and Development Prospects of Relativistic Optics". Computational Mathematics and Modeling 31, nr 1 (styczeń 2020): 13–18. http://dx.doi.org/10.1007/s10598-020-09472-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Atakishiyev, Natig M., Wolfgang Lassner i Kurt Bernardo Wolf. "The relativistic coma aberration. II. Helmholtz wave optics". Journal of Mathematical Physics 30, nr 11 (listopad 1989): 2463–68. http://dx.doi.org/10.1063/1.528525.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Chyla, W. T. "I. Geometrical optics of variable-frequency light rays:Theoretical basis". Canadian Journal of Physics 78, nr 8 (1.08.2000): 721–45. http://dx.doi.org/10.1139/p00-023.

Pełny tekst źródła
Streszczenie:
A variable-frequency light ray (VF ray) is a new concept in optics; it is a ray that is monochromatic at every point of the path (no frequency spread) but its frequency changes along the path due to interactions occurring along that path. For example, the frequency of the light ray can be affected by gravitational time dilation, reflection from a moving mirror, or coherent Raman scattering. Since the Fermat principle of least time (PLT) implicitly assumes that the frequency of the light ray is an irrelevant constant, the PLT-based geometrical optics is insufficient to handle propagation of VF rays. In this paper, we derive a new extremum principle (NEP) that is sensitive to changes of frequency along the path of the light ray and constitutes a basis for geometrical optics of VF rays. The NEP is derived directly from the principle of least action applied to the quantized electromagnetic field associated with the light ray propagating in a vacuum or in a transparent material medium in the presence of the gravitational field. The relationship between the NEP, the classical version of the Fermat principle, and the general relativistic generalization of the Fermat principle (the extremum principle for null geodesics) is discussed in detail. Applications of the NEP are suggested in the nonrelativistic, special relativistic, and general relativistic regimes. PACS Nos.: 42.15-i, 12.20-m, 04.20-q
Style APA, Harvard, Vancouver, ISO itp.
21

Moskvin, Alexander. "Charge Transfer Transitions and Circular Magnetooptics in Ferrites". Magnetochemistry 8, nr 8 (28.07.2022): 81. http://dx.doi.org/10.3390/magnetochemistry8080081.

Pełny tekst źródła
Streszczenie:
The concept of charge transfer (CT) transitions in ferrites is based on the cluster approach and takes into account the relevant interactions, such as the low-symmetry crystal field, spin–orbital, Zeeman, exchange and exchange-relativistic interactions. For all its simplicity, this concept yields a reliable qualitative and quantitative microscopic explanation of spectral, concentration, temperature and field dependencies of optic and magneto-optic properties ranging from the isotropic absorption and optical anisotropy to circular magneto-optics. In this review paper, starting with a critical analysis of the fundamental shortcomings of the “first-principles” density functional theory (DFT-based) band theory, we present the main ideas and techniques of the cluster theory of the CT transitions to be main contributors to circular magneto-optics of ferrites. Numerous examples of comparison of cluster theory with experimental data for orthoferrites, iron garnets and other ferrites are given.
Style APA, Harvard, Vancouver, ISO itp.
22

Veisz, Laszlo. "Author Correction: Plasma optics: Reflections off a relativistic mirror". Nature Physics 17, nr 8 (25.06.2021): 975. http://dx.doi.org/10.1038/s41567-021-01303-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Grado-Caffaro, M. A., i M. Grado-Caffaro. "Refractive index and material dispersion in relativistic electron optics". Optik 116, nr 11 (październik 2005): 551–52. http://dx.doi.org/10.1016/j.ijleo.2005.04.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Umstadter, D. P., C. Barty, M. Perry i G. A. Mourou. "Tabletop, Ultrahigh-Intensity Lasers: Dawn of Nonlinear Relativistic Optics". Optics and Photonics News 9, nr 7 (1.07.1998): 40. http://dx.doi.org/10.1364/opn.9.7.000040.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Bulanov, S. V., T. Zh Esirkepov, D. Habs, F. Pegoraro i T. Tajima. "Relativistic laser-matter interaction and relativistic laboratory astrophysics". European Physical Journal D 55, nr 2 (1.05.2009): 483–507. http://dx.doi.org/10.1140/epjd/e2009-00138-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Boyd, T. J. M., i R. Ondarza-Rovira. "Comment on “Relativistic high harmonics and (sub-)attosecond pulses: relativistic spikes and relativistic mirror"". European Physical Journal D 58, nr 1 (13.04.2010): 137–38. http://dx.doi.org/10.1140/epjd/e2010-00096-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Vigoureux, J. M., i Ph Grossel. "A relativistic‐like presentation of optics in stratified planar media". American Journal of Physics 61, nr 8 (sierpień 1993): 707–12. http://dx.doi.org/10.1119/1.17198.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Xia, Guoqiang, Weijian Zheng, Zhenggang Lei i Ruolan Zhang. "Rigorous coupled wave analysis of acousto-optics with relativistic considerations". Journal of the Optical Society of America A 32, nr 9 (3.08.2015): 1594. http://dx.doi.org/10.1364/josaa.32.001594.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Pukhov, A., i D. an der Brügge. "Reply to Comment on “Relativistic high harmonics and (sub-)attosecond pulses: relativistic spikes and relativistic mirror"". European Physical Journal D 58, nr 1 (20.04.2010): 139–40. http://dx.doi.org/10.1140/epjd/e2010-00100-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Lamprou, Theocharis, Rodrigo Lopez-Martens, Stefan Haessler, Ioannis Liontos, Subhendu Kahaly, Javier Rivera-Dean, Philipp Stammer i in. "Quantum-Optical Spectrometry in Relativistic Laser–Plasma Interactions Using the High-Harmonic Generation Process: A Proposal". Photonics 8, nr 6 (29.05.2021): 192. http://dx.doi.org/10.3390/photonics8060192.

Pełny tekst źródła
Streszczenie:
Quantum-optical spectrometry is a recently developed shot-to-shot photon correlation-based method, namely using a quantum spectrometer (QS), that has been used to reveal the quantum optical nature of intense laser–matter interactions and connect the research domains of quantum optics (QO) and strong laser-field physics (SLFP). The method provides the probability of absorbing photons from a driving laser field towards the generation of a strong laser–field interaction product, such as high-order harmonics. In this case, the harmonic spectrum is reflected in the photon number distribution of the infrared (IR) driving field after its interaction with the high harmonic generation medium. The method was implemented in non-relativistic interactions using high harmonics produced by the interaction of strong laser pulses with atoms and semiconductors. Very recently, it was used for the generation of non-classical light states in intense laser–atom interaction, building the basis for studies of quantum electrodynamics in strong laser-field physics and the development of a new class of non-classical light sources for applications in quantum technology. Here, after a brief introduction of the QS method, we will discuss how the QS can be applied in relativistic laser–plasma interactions and become the driving factor for initiating investigations on relativistic quantum electrodynamics.
Style APA, Harvard, Vancouver, ISO itp.
31

Curcio, Alessandro, Maria Pia Anania, Fabrizio Giuseppe Bisesto, Massimo Ferrario, Francesco Filippi, Danilo Giulietti i Massimo Petrarca. "Ray optics hamiltonian approach to relativistic self focusing of ultraintense lasers in underdense plasmas". EPJ Web of Conferences 167 (2018): 01003. http://dx.doi.org/10.1051/epjconf/201816701003.

Pełny tekst źródła
Streszczenie:
The relativistic self focusing of an ultraintense laser propagating through an underdense plasma is analyzed from a geometrical optics point of view, exploiting the classical hamiltonian formalism. The distribution of the laser intensity along the self-generated plasma channel is studied and compared to measurements.
Style APA, Harvard, Vancouver, ISO itp.
32

Eisenstaedt, Jean. "From Newton to Einstein: A forgotten relativistic optics of moving bodies". American Journal of Physics 75, nr 8 (sierpień 2007): 741–46. http://dx.doi.org/10.1119/1.2742398.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Jahn, Olga, Vyacheslav E. Leshchenko, Paraskevas Tzallas, Alexander Kessel, Mathias Krüger, Andreas Münzer, Sergei A. Trushin i in. "Towards intense isolated attosecond pulses from relativistic surface high harmonics". Optica 6, nr 3 (4.03.2019): 280. http://dx.doi.org/10.1364/optica.6.000280.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Polyzou, W. N. "Relativistic Few-Body Physics". Few-Body Systems 55, nr 8-10 (18.12.2013): 589–97. http://dx.doi.org/10.1007/s00601-013-0761-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Nayak, Malaya K., i Rajat K. Chaudhuri. "Relativistic coupled cluster method". European Physical Journal D 37, nr 2 (25.10.2005): 171–76. http://dx.doi.org/10.1140/epjd/e2005-00279-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Afanasjev, A. V. "Superdeformations in Relativistic and Non-Relativistic Mean Field Theories". Physica Scripta T88, nr 1 (2000): 10. http://dx.doi.org/10.1238/physica.topical.088a00010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Kessel, Alexander, Vyacheslav E. Leshchenko, Olga Jahn, Mathias Krüger, Andreas Münzer, Alexander Schwarz, Vladimir Pervak i in. "Relativistic few-cycle pulses with high contrast from picosecond-pumped OPCPA". Optica 5, nr 4 (9.04.2018): 434. http://dx.doi.org/10.1364/optica.5.000434.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Hacyan, Shahen. "Relativistic accelerating electromagnetic waves". Journal of Optics 13, nr 10 (29.09.2011): 105710. http://dx.doi.org/10.1088/2040-8978/13/10/105710.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Безбородов, С. В., И. И. Тупицын, А. В. Малышев, Д. В. Миронова i В. М. Шабаев. "Расчеты релятивистских, корреляционных, ядерных и квантово-электродинамических поправок к энергиям и потенциалам ионизации основного состояния литиеподобных ионов". Оптика и спектроскопия 130, nr 10 (2022): 1471. http://dx.doi.org/10.21883/os.2022.10.53615.4056-22.

Pełny tekst źródła
Streszczenie:
This paper presents all the leading contributions to the relativistic total energies and ionization potentials of the ground state of lithium-like ions with a nuclear charge in the range Z = 3 − 20. Correlation, relativistic and quantum-electrodynamics corrections as well as contributions due to the finite size of the nucleus (field shift) and finite mass of the nucleus (recoil effect) are evaluated. Relativistic calculations are performed by means of the configuration-interaction method in the basis of the Dirac-Fock-Sturm orbitals using the Dirac-Coulomb-Breit Hamiltonian.
Style APA, Harvard, Vancouver, ISO itp.
40

Kapteyn, Henry C., i Margaret M. Murnane. "Relativistic pulse compression". Journal of the Optical Society of America B 8, nr 8 (1.08.1991): 1657. http://dx.doi.org/10.1364/josab.8.001657.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Umstadter, D., S. Y. Chen, A. Maksimchuk, G. Mourou i R. Wagner. "Nonlinear Optics in Relativistic Plasmas and Laser Wake Field Acceleration of Electrons". Science 273, nr 5274 (26.07.1996): 472–75. http://dx.doi.org/10.1126/science.273.5274.472.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Lin, Jinpu, James H. Easter, Karl Krushelnick, Mark Mathis, Jian Dong, A. G. R. Thomas i John Nees. "Focus optimization at relativistic intensity with high numerical aperture and adaptive optics". Optics Communications 421 (sierpień 2018): 79–82. http://dx.doi.org/10.1016/j.optcom.2018.03.075.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Evans, M. W. "On the observability of the fieldB (3): Relativistic effects in magneto-optics". Foundations of Physics Letters 8, nr 5 (październik 1995): 459–66. http://dx.doi.org/10.1007/bf02186581.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Rideout, David, Thomas Jennewein, Giovanni Amelino-Camelia, Tommaso F. Demarie, Brendon L. Higgins, Achim Kempf, Adrian Kent i in. "Fundamental quantum optics experiments conceivable with satellites—reaching relativistic distances and velocities". Classical and Quantum Gravity 29, nr 22 (18.10.2012): 224011. http://dx.doi.org/10.1088/0264-9381/29/22/224011.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Gordon, D. F., B. Hafizi i M. H. Helle. "Solution of relativistic quantum optics problems using clusters of graphical processing units". Journal of Computational Physics 267 (czerwiec 2014): 50–62. http://dx.doi.org/10.1016/j.jcp.2014.02.028.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Widom, A., J. Swain, Y. N. Srivastava, M. Blasone i G. Vitiello. "Zero-point energy and photon spin-induced diffraction phenomena". International Journal of Geometric Methods in Modern Physics 17, supp01 (20.03.2020): 2040006. http://dx.doi.org/10.1142/s021988782040006x.

Pełny tekst źródła
Streszczenie:
A brief review of our previously introduced forward and backward in time formalism for non-relativistic electron diffraction and its relativistic extension to study photons in time and space is presented. The zero-point energy in the Planck black body spectrum emerges naturally once time-symmetric motion — inherent in Maxwell equations — is invoked for photons. A study of two-slit experiments for slits smaller than the wavelength of the photon unravels novel phenomena due to the spin of the photon. Our proposed experiments are within reach of present technology and could be of interest for modern imaging and quantum optics.
Style APA, Harvard, Vancouver, ISO itp.
47

ZHOU, H. Q., i B. S. ZOU. "RELATIVISTIC EFFECTS IN TWO PHOTON DECAY OF 0-+ QUARKONIUM". International Journal of Modern Physics A 20, nr 08n09 (10.04.2005): 1939–42. http://dx.doi.org/10.1142/s0217751x05023682.

Pełny tekst źródła
Streszczenie:
Relativistic effects in two photon decay of 0-+ quarkonium are investigated with a relativistic phenomenological approach. Comparing with the non-relativistic approximation, the relativistic phenomenological approach gives corrections coming from three sources: [Formula: see text] relative momentum distribution, [Formula: see text] relative energy distribution and description of quark spinors in the meson. These relativistic effects are studied in detail for [Formula: see text] and [Formula: see text] systems.
Style APA, Harvard, Vancouver, ISO itp.
48

Tudor, Tiberiu, i Gabriel Voitcu. "Revisiting Poincaré Sphere and Pauli Algebra in Polarization Optics". Photonics 11, nr 4 (17.04.2024): 379. http://dx.doi.org/10.3390/photonics11040379.

Pełny tekst źródła
Streszczenie:
We present one of the main lines of development of Poincaré sphere representation in polarization optics, by using largely some of our contributions in the field. We refer to the action of deterministic devices, specifically the diattenuators, on the partial polarized light. On one hand, we emphasize the intimate connection between the Pauli algebraic analysis and the Poincaré ball representation of this interaction. On the other hand, we bring to the foreground the close similarity between the law of composition of the Poincaré vectors of the diattenuator and of polarized light and the law of composition of relativistic admissible velocities. These two kinds of vectors are isomorphic, and they are “imprisoned” in a sphere of finite radius, standardizable at a radius of one, i.e., Poincaré sphere.
Style APA, Harvard, Vancouver, ISO itp.
49

Blackman, Eric G., i George B. Field. "Relativistic magnetic reconnection". Physica Scripta T52 (1.01.1994): 93–95. http://dx.doi.org/10.1088/0031-8949/1994/t52/016.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Ashfaque, J., J. Lynch i P. Strange. "Relativistic quantum backflow". Physica Scripta 94, nr 12 (30.10.2019): 125107. http://dx.doi.org/10.1088/1402-4896/ab265c.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii