Gotowa bibliografia na temat „Regularization by Denoising”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Regularization by Denoising”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Regularization by Denoising"
Lin, Huangxing, Yihong Zhuang, Xinghao Ding, Delu Zeng, Yue Huang, Xiaotong Tu i John Paisley. "Self-Supervised Image Denoising Using Implicit Deep Denoiser Prior". Proceedings of the AAAI Conference on Artificial Intelligence 37, nr 2 (26.06.2023): 1586–94. http://dx.doi.org/10.1609/aaai.v37i2.25245.
Pełny tekst źródłaPrasath, V. "A well-posed multiscale regularization scheme for digital image denoising". International Journal of Applied Mathematics and Computer Science 21, nr 4 (1.12.2011): 769–77. http://dx.doi.org/10.2478/v10006-011-0061-7.
Pełny tekst źródłaTan, Yi, Jin Fan, Dong Sun, Qingwei Gao i Yixiang Lu. "Multi-scale Image Denoising via a Regularization Method". Journal of Physics: Conference Series 2253, nr 1 (1.04.2022): 012030. http://dx.doi.org/10.1088/1742-6596/2253/1/012030.
Pełny tekst źródłaLi, Ao, Deyun Chen, Kezheng Lin i Guanglu Sun. "Hyperspectral Image Denoising with Composite Regularization Models". Journal of Sensors 2016 (2016): 1–9. http://dx.doi.org/10.1155/2016/6586032.
Pełny tekst źródłaLi, Shu, Xi Yang, Haonan Liu, Yuwei Cai i Zhenming Peng. "Seismic Data Denoising Based on Sparse and Low-Rank Regularization". Energies 13, nr 2 (13.01.2020): 372. http://dx.doi.org/10.3390/en13020372.
Pełny tekst źródłaBaloch, Gulsher, Huseyin Ozkaramanli i Runyi Yu. "Residual Correlation Regularization Based Image Denoising". IEEE Signal Processing Letters 25, nr 2 (luty 2018): 298–302. http://dx.doi.org/10.1109/lsp.2017.2789018.
Pełny tekst źródłaChen, Guan Nan, Dan Er Xu, Rong Chen, Zu Fang Huang i Zhong Jian Teng. "Iterative Regularization Model for Image Denoising Based on Dual Norms". Applied Mechanics and Materials 182-183 (czerwiec 2012): 1245–49. http://dx.doi.org/10.4028/www.scientific.net/amm.182-183.1245.
Pełny tekst źródłaGuo, Li, Weilong Chen, Yu Liao, Honghua Liao i Jun Li. "An Edge-Preserved Image Denoising Algorithm Based on Local Adaptive Regularization". Journal of Sensors 2016 (2016): 1–6. http://dx.doi.org/10.1155/2016/2019569.
Pełny tekst źródłaLiu, Kui, Jieqing Tan i Benyue Su. "An Adaptive Image Denoising Model Based on Tikhonov and TV Regularizations". Advances in Multimedia 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/934834.
Pełny tekst źródłaShen, Lixin, Bruce W. Suter i Erin E. Tripp. "Algorithmic versatility of SPF-regularization methods". Analysis and Applications 19, nr 01 (3.07.2020): 43–69. http://dx.doi.org/10.1142/s0219530520400060.
Pełny tekst źródłaRozprawy doktorskie na temat "Regularization by Denoising"
Jalalzai, Khalid. "Regularization of inverse problems in image processing". Phd thesis, Ecole Polytechnique X, 2012. http://pastel.archives-ouvertes.fr/pastel-00787790.
Pełny tekst źródłaLaruelo, Fernandez Andrea. "Integration of magnetic resonance spectroscopic imaging into the radiotherapy treatment planning". Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30126/document.
Pełny tekst źródłaThe aim of this thesis is to propose new algorithms to overcome the current limitations and to address the open challenges in the processing of magnetic resonance spectroscopic imaging (MRSI) data. MRSI is a non-invasive modality able to provide the spatial distribution of relevant biochemical compounds (metabolites) commonly used as biomarkers of disease. Information provided by MRSI can be used as a valuable insight for the diagnosis, treatment and follow-up of several diseases such as cancer or neurological disorders. Obtaining accurate and reliable information from in vivo MRSI signals is a crucial requirement for the clinical utility of this technique. Despite the numerous publications on the topic, the interpretation of MRSI data is still a challenging problem due to different factors such as the low signal-to-noise ratio (SNR) of the signals, the overlap of spectral lines or the presence of nuisance components. This thesis addresses the problem of interpreting MRSI data and characterizing recurrence in tumor brain patients. These objectives are addressed through a methodological approach based on novel processing methods that incorporate prior knowledge on the MRSI data using a spatio-spectral regularization. As an application, the thesis addresses the integration of MRSI into the radiotherapy treatment workflow within the context of the European project SUMMER (Software for the Use of Multi-Modality images in External Radiotherapy) founded by the European Commission (FP7-PEOPLE-ITN framework)
Heinrich, André. "Fenchel duality-based algorithms for convex optimization problems with applications in machine learning and image restoration". Doctoral thesis, Universitätsbibliothek Chemnitz, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-108923.
Pełny tekst źródłaCastellanos, Lopez Clara. "Accélération et régularisation de la méthode d'inversion des formes d'ondes complètes en exploration sismique". Phd thesis, Université Nice Sophia Antipolis, 2014. http://tel.archives-ouvertes.fr/tel-01064412.
Pełny tekst źródłaNair, Pravin. "Provably Convergent Algorithms for Denoiser-Driven Image Regularization". Thesis, 2022. https://etd.iisc.ac.in/handle/2005/5887.
Pełny tekst źródłaGavaskar, Ruturaj G. "On Plug-and-Play Regularization using Linear Denoisers". Thesis, 2022. https://etd.iisc.ac.in/handle/2005/5973.
Pełny tekst źródłaMichenková, Marie. "Regularizační metody založené na metodách nejmenších čtverců". Master's thesis, 2013. http://www.nusl.cz/ntk/nusl-330700.
Pełny tekst źródłaHeinrich, André. "Fenchel duality-based algorithms for convex optimization problems with applications in machine learning and image restoration". Doctoral thesis, 2012. https://monarch.qucosa.de/id/qucosa%3A19869.
Pełny tekst źródłaCzęści książek na temat "Regularization by Denoising"
Lanza, Alessandro, Serena Morigi i Fiorella Sgallari. "Convex Image Denoising via Non-Convex Regularization". W Lecture Notes in Computer Science, 666–77. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18461-6_53.
Pełny tekst źródłaShi, Hui, Yann Traonmilin i Jean-François Aujol. "Compressive Learning of Deep Regularization for Denoising". W Lecture Notes in Computer Science, 162–74. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-31975-4_13.
Pełny tekst źródłaLucchese, Mirko, Iuri Frosio i N. Alberto Borghese. "Optimal Choice of Regularization Parameter in Image Denoising". W Image Analysis and Processing – ICIAP 2011, 534–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-24085-0_55.
Pełny tekst źródłaCalderon, Felix, i Carlos A. Júnez–Ferreira. "Regularization with Adaptive Neighborhood Condition for Image Denoising". W Advances in Soft Computing, 398–406. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-25330-0_35.
Pełny tekst źródłaPeng, Yong, Shen Wang i Bao-Liang Lu. "Marginalized Denoising Autoencoder via Graph Regularization for Domain Adaptation". W Neural Information Processing, 156–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-42042-9_20.
Pełny tekst źródłaGhoniem, Mahmoud, Youssef Chahir i Abderrahim Elmoataz. "Video Denoising and Simplification Via Discrete Regularization on Graphs". W Advanced Concepts for Intelligent Vision Systems, 380–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-88458-3_34.
Pełny tekst źródłaZhang, J. W., J. Liu, Y. H. Zheng i J. Wang. "Regularization Parameter Selection for Gaussian Mixture Model Based Image Denoising Method". W Advances in Computer Science and Ubiquitous Computing, 291–97. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-3023-9_47.
Pełny tekst źródłaKim, Yunho, Paul M. Thompson, Arthur W. Toga, Luminita Vese i Liang Zhan. "HARDI Denoising: Variational Regularization of the Spherical Apparent Diffusion Coefficient sADC". W Lecture Notes in Computer Science, 515–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02498-6_43.
Pełny tekst źródłaLi, Li, Xiaohong Shen i Shanshan Gao. "Image Denoising Using Expected Patch Log Likelihood and Hyper-laplacian Regularization". W Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery, 761–70. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70665-4_82.
Pełny tekst źródłaLucchese, Mirko, i N. Alberto Borghese. "Denoising of Digital Radiographic Images with Automatic Regularization Based on Total Variation". W Image Analysis and Processing – ICIAP 2009, 711–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04146-4_76.
Pełny tekst źródłaStreszczenia konferencji na temat "Regularization by Denoising"
Bahia, B., i M. Sacchi. "Deblending via Regularization by Denoising". W 82nd EAGE Annual Conference & Exhibition. European Association of Geoscientists & Engineers, 2020. http://dx.doi.org/10.3997/2214-4609.202011992.
Pełny tekst źródłaHu, Yuyang, Jiaming Liu, Xiaojian Xu i Ulugbek S. Kamilov. "Monotonically Convergent Regularization by Denoising". W 2022 IEEE International Conference on Image Processing (ICIP). IEEE, 2022. http://dx.doi.org/10.1109/icip46576.2022.9897639.
Pełny tekst źródłaBruni, V., i D. Vitulano. "Signal and image denoising without regularization". W 2013 20th IEEE International Conference on Image Processing (ICIP). IEEE, 2013. http://dx.doi.org/10.1109/icip.2013.6738111.
Pełny tekst źródłaHongyi Liu i Zhihui Wei. "Structure-preserved NLTV regularization for image denoising". W 2011 International Conference on Image Analysis and Signal Processing (IASP). IEEE, 2011. http://dx.doi.org/10.1109/iasp.2011.6109033.
Pełny tekst źródłaClinchant, Stephane, Gabriela Csurka i Boris Chidlovskii. "A Domain Adaptation Regularization for Denoising Autoencoders". W Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Stroudsburg, PA, USA: Association for Computational Linguistics, 2016. http://dx.doi.org/10.18653/v1/p16-2005.
Pełny tekst źródłaCarrera, Anthony, Adrian Basarab i Roberto Lavarello. "Attenuation coefficient imaging using regularization by denoising". W 2022 IEEE International Ultrasonics Symposium (IUS). IEEE, 2022. http://dx.doi.org/10.1109/ius54386.2022.9957734.
Pełny tekst źródłaGhoniem, Mahmoud, Youssef Chahir i Abderrahim Elmoataz. "Video denoising via discrete regularization on graphs". W 2008 19th International Conference on Pattern Recognition (ICPR). IEEE, 2008. http://dx.doi.org/10.1109/icpr.2008.4761412.
Pełny tekst źródłaXie, Qi, Qian Zhao, Deyu Meng, Zongben Xu, Shuhang Gu, Wangmeng Zuo i Lei Zhang. "Multispectral Images Denoising by Intrinsic Tensor Sparsity Regularization". W 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016. http://dx.doi.org/10.1109/cvpr.2016.187.
Pełny tekst źródłaRey, Samuel, i Antonio G. Marques. "Robust Graph-Filter Identification with Graph Denoising Regularization". W ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021. http://dx.doi.org/10.1109/icassp39728.2021.9414909.
Pełny tekst źródłaCharest, Michael, Michael Elad i Peyman Milanfar. "A General Iterative Regularization Framework For Image Denoising". W 2006 40th Annual Conference on Information Sciences and Systems. IEEE, 2006. http://dx.doi.org/10.1109/ciss.2006.286510.
Pełny tekst źródła