Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Regenerative Snubbers.

Artykuły w czasopismach na temat „Regenerative Snubbers”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 45 najlepszych artykułów w czasopismach naukowych na temat „Regenerative Snubbers”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Steyn, C. G. "Analysis and optimization of linear regenerative snubbers". Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie 5, nr 4 (18.03.1986): 170–77. http://dx.doi.org/10.4102/satnt.v5i4.995.

Pełny tekst źródła
Streszczenie:
In this article both the general linear regenerative turn-on and turn-off snubbers are analysed and optimized independently from one another, in terms of minimum energy losses. The dissipative snubber - which was up to now the only optimized snubber - now becomes merely a special case of this general regenerative snubber. Equations describing the most important parameters are presented in tables, while some energy versus snubber size graphs are also shown.
Style APA, Harvard, Vancouver, ISO itp.
2

., Soumya, A. N. Nagashree i R. S. Geetha. "Comparision of Voltage Stress Across the MOSFET Switch of a Flyback Converter with Various Snubbers". International Journal of Innovative Science and Research Technology 5, nr 6 (21.07.2020): 1567–71. http://dx.doi.org/10.38124/ijisrt20jun1114.

Pełny tekst źródła
Streszczenie:
A Flyback converter is a simple switch-mode power supply that can be used to generate a DC output from either an AC or DC input. The converter switch is the most critical part of any converter. The voltage stress across the switch is a major issue as the high voltage spikes occur due to interaction between its output capacitance and the leakage inductance of the transformer. These spikes can be reduced with various snubbers like conventional tertiary winding, Resistor Capacitor and Diode(RCD) snubber, energy regenerative snubber and an active clamp snubber. This paper aims to analyze and compare the voltage stress across the MOSFET switch of Flyback converter with various snubber circuits.
Style APA, Harvard, Vancouver, ISO itp.
3

Steyn, C. G. "Analysis and optimization of regenerative linear snubbers". IEEE Transactions on Power Electronics 4, nr 3 (lipiec 1989): 362–70. http://dx.doi.org/10.1109/63.39126.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Swanepoel, P. H., i J. D. van Wyk. "Analysis and optimization of regenerative linear snubbers applied to switches with voltage and current tails". IEEE Transactions on Power Electronics 9, nr 4 (lipiec 1994): 433–42. http://dx.doi.org/10.1109/63.318902.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

R. Reinert, Marcos, Jonathan Dômini Sperb, Marcello Mezaroba, Cassiano Rech i Leandro Michels. "Transformerless Doubleconversion Ups Using A Regenerative Snubber Circuit". Eletrônica de Potência 16, nr 2 (1.05.2011): 158–67. http://dx.doi.org/10.18618/rep.2011.2.158167.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Radika, P., i Subhranasu Sekar Dash. "Regenerative snubber for UPS inverter". International Journal of Power Electronics 2, nr 1 (2010): 66. http://dx.doi.org/10.1504/ijpelec.2010.029500.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Kasasbeh, Abdalkreem, Burak Kelleci, Salih Baris Ozturk, Ahmet Aksoz i Omar Hegazy. "SEPIC Converter with an LC Regenerative Snubber for EV Applications". Energies 13, nr 21 (3.11.2020): 5765. http://dx.doi.org/10.3390/en13215765.

Pełny tekst źródła
Streszczenie:
A Single-Ended Primary-Inductor Converter (SEPIC) converter with an Inductor-Capacitor (LC) regenerative snubber is proposed to reduce Electromagnetic Interference (EMI) for Electric Vehicle (EV) applications. The switching energy is transferred through a capacitor to an inductor which is coupled to SEPIC inductors. This technique reduces the number of components and also returns some of switching energy to SEPIC converter. The mathematical analysis and optimization of LC snubber with respect to number of turns is also presented. Spice simulations and experimental results are provided to verify its performance. The proposed LC regenerative snubber reduces the peak voltage by 16 V on the switching transistor during the switching transient. It is also indicated that 8 dB reduction is achieved in the EMI measurements at ringing frequency and 10 dB reduction at high frequency band.
Style APA, Harvard, Vancouver, ISO itp.
8

Ricardo Lima, Luiz, Yales Rômulo de Novaes i Marcello Mezaroba. "Single Phase Three Level Npc Voltage-fed Inverter With Regenerative Snubber". Eletrônica de Potência 16, nr 4 (1.11.2011): 320–29. http://dx.doi.org/10.18618/rep.20114.320329.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Mezaroba, Marcello, i Jonathan Dômini Sperb. "Auxiliary Converter With Zvs Commutation Applied To Regenerative Undeland Snubber". Eletrônica de Potência 13, nr 2 (1.05.2008): 61–68. http://dx.doi.org/10.18618/rep.2008.2.061068.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Dzhunusbekov, Erlan J. "A novel semi-active regenerative snubber". Journal of Vibroengineering 22, nr 5 (15.08.2020): 1240–50. http://dx.doi.org/10.21595/jve.2020.21005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Soltanzadeh, K., i M. R. Yousefi. "Regenerative‐passive snubber two‐switch forward converter". Electronics Letters 54, nr 10 (maj 2018): 653–55. http://dx.doi.org/10.1049/el.2018.0079.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Yao, Jia, Alexander Abramovitz i Keyue Ma Smedley. "Steep-Gain Bidirectional Converter With a Regenerative Snubber". IEEE Transactions on Power Electronics 30, nr 12 (grudzień 2015): 6845–56. http://dx.doi.org/10.1109/tpel.2015.2395455.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Abramovitz, Alexander, Chih-Sheng Liao i Keyue Smedley. "State-Plane Analysis of Regenerative Snubber for Flyback Converters". IEEE Transactions on Power Electronics 28, nr 11 (listopad 2013): 5323–32. http://dx.doi.org/10.1109/tpel.2013.2243845.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Balbayev, Gani, Arailym Nussibaliyeva, Baurzhan Tultaev, Erlan Dzhunusbekov, Gulsara Yestemessova i Aliya Yelemanova. "A novel regenerative snubber circuit for flyback topology converters". Journal of Vibroengineering 22, nr 4 (30.06.2020): 983–92. http://dx.doi.org/10.21595/jve.2020.20898.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Abramovitz, A., Tang Cheng i K. Smedley. "Analysis and Design of Forward Converter With Energy Regenerative Snubber". IEEE Transactions on Power Electronics 25, nr 3 (marzec 2010): 667–76. http://dx.doi.org/10.1109/tpel.2009.2033275.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Kim, Kwang-Seop, Jung-Min Kwon i Bong-Hwan Kwon. "Single-Switch Single Power-Conversion PFC Converter Using Regenerative Snubber". IEEE Transactions on Industrial Electronics 65, nr 7 (lipiec 2018): 5436–44. http://dx.doi.org/10.1109/tie.2017.2774765.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Kato, Koji, i Jun-ichi Itoh. "Control Method for Multi Power Supplies Interface System Using Regenerative Snubber". IEEJ Transactions on Industry Applications 130, nr 4 (2010): 518–25. http://dx.doi.org/10.1541/ieejias.130.518.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Radika, P. "A High Efficiency DC-DC Boost Converter with Passive Regenerative Snubber". Journal of Electrical Engineering and Technology 9, nr 2 (1.03.2014): 501–7. http://dx.doi.org/10.5370/jeet.2014.9.2.501.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Vartak, Chaitanya, Alexander Abramovitz i Keyue Ma Smedley. "Analysis and Design of Energy Regenerative Snubber for Transformer Isolated Converters". IEEE Transactions on Power Electronics 29, nr 11 (listopad 2014): 6030–40. http://dx.doi.org/10.1109/tpel.2014.2301194.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Konishi, Y., i Y. F. Huang. "Soft-switching buck boost converter using pulse current regenerative resonant snubber". Electronics Letters 43, nr 2 (2007): 125. http://dx.doi.org/10.1049/el:20073336.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Menegaz, P. J. M., J. L. F. Vieira i D. S. L. Simonetti. "A magnetically coupled regenerative turn-on and turn-off snubber configuration". IEEE Transactions on Industrial Electronics 47, nr 4 (2000): 722–28. http://dx.doi.org/10.1109/41.857951.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Salam, Z., i A. Jusoh. "Bidirectional high-frequency link inverter with regenerative snubber and deadbeat control". International Journal of Electronics 98, nr 3 (marzec 2011): 339–55. http://dx.doi.org/10.1080/00207217.2010.538904.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Bauman, Jennifer, i Mehrdad Kazerani. "A Novel Capacitor-Switched Regenerative Snubber for DC/DC Boost Converters". IEEE Transactions on Industrial Electronics 58, nr 2 (luty 2011): 514–23. http://dx.doi.org/10.1109/tie.2010.2046576.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Xie, Wenhao, Shouxiang Li, Keyue Ma Smedley, Jianze Wang, Yanchao Ji i Jilai Yu. "A Family of Dual Resonant Switched-Capacitor Converter With Passive Regenerative Snubber". IEEE Transactions on Power Electronics 35, nr 5 (maj 2020): 4891–904. http://dx.doi.org/10.1109/tpel.2019.2945796.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Okayama, Hideo, Taichiro Tsuchiya i Yasuhito Shimomura. "A new regenerative snubber circuit for large-capacity three-level GTO inverter systems". Electrical Engineering in Japan 120, nr 2 (30.07.1997): 41–48. http://dx.doi.org/10.1002/(sici)1520-6416(19970730)120:2<41::aid-eej6>3.0.co;2-t.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Okayama, Hideo, Taichiro Tsuchiya i Yasuhito Shimomura. "Proposal of Newly Regenerative Snubber Circuit for Large Capacity 3-Level GTO Inverter System." IEEJ Transactions on Industry Applications 117, nr 2 (1997): 189–95. http://dx.doi.org/10.1541/ieejias.117.189.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Hwu, K. I., i W. Z. Jiang. "Single-Switch Coupled-Inductor-Based Two-Channel LED Driver With a Passive Regenerative Snubber". IEEE Transactions on Power Electronics 32, nr 6 (czerwiec 2017): 4482–90. http://dx.doi.org/10.1109/tpel.2016.2599271.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Tibola, Gabriel, Erik Lemmen, Jorge L. Duarte i Ivo Barbi. "Passive Regenerative and Dissipative Snubber Cells for Isolated SEPIC Converters: Analysis, Design, and Comparison". IEEE Transactions on Power Electronics 32, nr 12 (grudzień 2017): 9210–22. http://dx.doi.org/10.1109/tpel.2017.2653940.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Umetani, Kazuhiro, Fujiyuki Iwamoto i Keisuke Yagyu. "A unidirectional boost chopper with snubber energy regeneration using a coupled inductor". IEEJ Transactions on Electrical and Electronic Engineering 9, nr 3 (21.04.2014): 315–23. http://dx.doi.org/10.1002/tee.21972.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Subiyanto, Azah Mohamed i M. A. Hannan. "Intelligent Photovoltaic Maximum Power Point Tracking Controller for Energy Enhancement in Renewable Energy System". Journal of Renewable Energy 2013 (2013): 1–9. http://dx.doi.org/10.1155/2013/901962.

Pełny tekst źródła
Streszczenie:
Photovoltaic (PV) system is one of the promising renewable energy technologies. Although the energy conversion efficiency of the system is still low, but it has the advantage that the operating cost is free, very low maintenance and pollution-free. Maximum power point tracking (MPPT) is a significant part of PV systems. This paper presents a novel intelligent MPPT controller for PV systems. For the MPPT algorithm, an optimized fuzzy logic controller (FLC) using the Hopfield neural network is proposed. It utilizes an automatically tuned FLC membership function instead of the trial-and-error approach. The MPPT algorithm is implemented in a new variant of coupled inductor soft switching boost converter with high voltage gain to increase the converter output from the PV panel. The applied switching technique, which includes passive and active regenerative snubber circuits, reduces the insulated gate bipolar transistor switching losses. The proposed MPPT algorithm is implemented using the dSPACE DS1104 platform software on a DS1104 board controller. The prototype MPPT controller is tested using an agilent solar array simulator together with a 3 kW real PV panel. Experimental test results show that the proposed boost converter produces higher output voltages and gives better efficiency (90%) than the conventional boost converter with an RCD snubber, which gives 81% efficiency. The prototype MPPT controller is also found to be capable of tracking power from the 3 kW PV array about 2.4 times more than that without using the MPPT controller.
Style APA, Harvard, Vancouver, ISO itp.
31

Lumen, S. M. Sanzad, Ramani Kannan i Nor Zaihar Yahaya. "Prospects of regenerative current breaking in DC circuit breaker topology". International Journal of Applied Power Engineering (IJAPE) 10, nr 3 (1.09.2021): 217. http://dx.doi.org/10.11591/ijape.v10.i3.pp217-229.

Pełny tekst źródła
Streszczenie:
Due to the stunning advancement of power electronics, DC power system is getting immense attention in the field of research. Protection and hereafter the protective devices for the DC power system application are two vital areas that need to be explored and developed further. Designing a protective device such as DC circuit breaker possesses a lot of challenges. The main challenge is to interrupt a current which does not have a natural zero crossing like AC current has. In addition, energy is stored in the network inductances during normal operation. Instantaneous current breaking is opposed by this stored energy during circuit breaker tripping, hence, all the DC circuit breaker topologies proposed in literature use snubber network, nonlinear resistor to dissipate this stored energy as heat during the current breaking operation. However, it is possible to store this energy momentarily and reuse it later by developing an improvised topology. In this paper, the prospects of energy recovery and reuse in a DC circuit breaker was studied and a new topology with regenerative current breaking capability had been proposed. This new topology can feed the stored energy of the network back into the same network after breaking the current and thus can improve the overall system efficiency.
Style APA, Harvard, Vancouver, ISO itp.
32

Inaba, Claudio Y., Yoshihiro Konishi i Mutsuo Nakaoka. "Pulse Current Regenerative Resonant Snubber-Assisted Two-Switch Flyback Type ZVS PWM DC-DC Converter". IEEJ Transactions on Industry Applications 124, nr 2 (2004): 255–61. http://dx.doi.org/10.1541/ieejias.124.255.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Inaba, Claudio Y., Yoshihiro Konishi i Mutsuo Nakaoka. "Pulse current regenerative resonant snubber-assisted two-switch flyback-type ZVS PWM DC-DC converter". Electrical Engineering in Japan 152, nr 3 (2005): 74–81. http://dx.doi.org/10.1002/eej.20081.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Itoh, J. I., i K. I. Nagayoshi. "A New Bidirectional Switch With Regenerative Snubber to Realize a Simple Series Connection for Matrix Converters". IEEE Transactions on Power Electronics 24, nr 3 (marzec 2009): 822–29. http://dx.doi.org/10.1109/tpel.2008.2008021.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Burgardt, Ismael, Eloi Agostini Junior, Carlos H. Illa Font i Claudinor B. Nascimento. "Dimmable flicker‐free power LEDs lighting system based on a SEPIC rectifier using a regenerative snubber". IET Power Electronics 9, nr 5 (kwiecień 2016): 891–99. http://dx.doi.org/10.1049/iet-pel.2015.0313.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Konishi, Yoshihiro, i Mutsuo Nakaoka. "Two Switches Flyback Type Soft-Switching DC-DC Converter using Snubber Energy Regenerative Circuits with Auxiliary Transformers". IEEJ Transactions on Industry Applications 120, nr 11 (2000): 1393–94. http://dx.doi.org/10.1541/ieejias.120.1393.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Sperb, Jonathan Domini, Ivan Xavier Zanatta, Leandro Michels, Cassiano Rech i Marcello Mezaroba. "Regenerative Undeland Snubber Using a ZVS PWM DC–DC Auxiliary Converter Applied to Three-Phase Voltage-Fed Inverters". IEEE Transactions on Industrial Electronics 58, nr 8 (sierpień 2011): 3298–307. http://dx.doi.org/10.1109/tie.2010.2089947.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Higashiyama, Koji, Fumito Kusama, Makoto Ozone, Keiji Akamatsu i Masakazu Michihira. "Proposal of the Autonomous Isolated Regenerative Snubber Circuit and Evaluation of its Effect on DC/AC Power Conversion System". IEEJ Transactions on Industry Applications 139, nr 9 (1.09.2019): 767–75. http://dx.doi.org/10.1541/ieejias.139.767.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Yao, Jia, Alexander Abramovitz i Keyue Ma Smedley. "Analysis and Design of Charge Pump-Assisted High Step-Up Tapped Inductor SEPIC Converter With an “Inductorless” Regenerative Snubber". IEEE Transactions on Power Electronics 30, nr 10 (październik 2015): 5565–80. http://dx.doi.org/10.1109/tpel.2014.2374992.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Blinov, Andrei, Ievgen Verbytskyi, Denys Zinchenko, Dmitri Vinnikov i Ilya Galkin. "Modular Battery Charger for Light Electric Vehicles". Energies 13, nr 4 (11.02.2020): 774. http://dx.doi.org/10.3390/en13040774.

Pełny tekst źródła
Streszczenie:
Rapid developments in energy storage and conversion technologies have led to the proliferation of low- and medium-power electric vehicles. Their regular operation typically requires an on-board battery charger that features small dimensions, high efficiency and power quality. This paper analyses an interleaved step-down single-ended primary-inductor converter (SEPIC) operating in the discontinuous conduction mode (DCM) for charging of battery-powered light electric vehicles such as an electric wheelchair. The required characteristics are achieved thanks to favourable arrangement of the inductors in the circuit: the input inductor is used for power factor correction (PFC) without additional elements, while the other inductor is used to provide galvanic isolation and required voltage conversion ratio. A modular interleaved structure of the converter helps to implement low-profile converter design with standard components, distribute the power losses and improve the performance. An optimal number of converter cells was estimated. The converter uses a simple control algorithm for constant current and constant voltage charging modes. To reduce the energy losses, synchronous rectification along with a common regenerative snubber circuit was implemented. The proposed charger concept was verified with a developed 230 VAC to 29.4 VDC experimental prototype that has proved its effectiveness.
Style APA, Harvard, Vancouver, ISO itp.
41

TingTing Song, Nianci Huang i A. Ioinovici. "A family of zero-voltage and zero-current-switching (ZVZCS) three-level DC-DC converters with secondary-assisted regenerative passive snubber". IEEE Transactions on Circuits and Systems I: Regular Papers 52, nr 11 (listopad 2005): 2473–81. http://dx.doi.org/10.1109/tcsi.2005.853911.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Maki, Koji, i Hiroshi Mochikawa. "A Small and High Efficiency Circuit Topology with Significantly Improved Trade-off Between Switching Losses and dv/dt for Series Connected Devices with Regenerative Snubber Circuits". IEEJ Transactions on Industry Applications 142, nr 6 (1.06.2022): 480–87. http://dx.doi.org/10.1541/ieejias.142.480.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Sivaraman, P. R. "Smart irrigation system with GSM module using DC-DC converter with Regenerative Snubber". International Journal of Emerging Trends in Science and Technology 4, nr 9 (30.09.2017). http://dx.doi.org/10.18535/ijetst/v4i9.03.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Blinov, Andrei, Ievgen Verbytskyi, Dimosthenis Peftitsis i Dmitri Vinnikov. "Regenerative Passive Snubber Circuit for High-Frequency Link Converters". IEEE Journal of Emerging and Selected Topics in Industrial Electronics, 2021, 1. http://dx.doi.org/10.1109/jestie.2021.3066897.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Maki, Koji, i Hiroshi Mochikawa. "A Small and High Efficiency Circuit Topology with Significantly Improved Trade-off Between Switching Losses and dv/dt for Series Connected Devices with Regenerative Snubber Circuits". IEEJ Journal of Industry Applications, 2022. http://dx.doi.org/10.1541/ieejjia.22000380.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii