Artykuły w czasopismach na temat „Reduced Graphene Oxide-Silver Nanocomposite”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Reduced Graphene Oxide-Silver Nanocomposite”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Qian, Yuhong, Yiting Wang i Li Wang. "Preparation of cuprous oxide-supported silver-modified reduced graphene oxide nanocomposites for non-enzymatic electrochemical sensor". Reviews in Analytical Chemistry 41, nr 1 (1.01.2022): 189–97. http://dx.doi.org/10.1515/revac-2022-0045.
Pełny tekst źródłaBalakrishnan, Dhivyabharathi, i Cheng-I. Lee. "Surface Functionalization of Bamboo with Silver-Reduced Graphene Oxide Nanosheets to Improve Hydrophobicity and Mold Resistance". Coatings 12, nr 7 (11.07.2022): 980. http://dx.doi.org/10.3390/coatings12070980.
Pełny tekst źródłaPerumal, Dharshini, Che Azurahanim Che Abdullah, Emmellie Laura Albert i Ruzniza Mohd Zawawi. "Green Synthesis of Silver Nanoparticle Decorated on Reduced Graphene Oxide Nanocomposite using Clinacanthus nutans and Its Applications". Sains Malaysiana 52, nr 3 (31.03.2023): 953–66. http://dx.doi.org/10.17576/jsm-2023-5203-19.
Pełny tekst źródłaBarua, Shaswat, Pronobesh Chattopadhyay, Mayur M. Phukan, Bolin K. Konwar, Johirul Islam i Niranjan Karak. "Biocompatible hyperbranched epoxy/silver–reduced graphene oxide–curcumin nanocomposite as an advanced antimicrobial material". RSC Adv. 4, nr 88 (2014): 47797–805. http://dx.doi.org/10.1039/c4ra07802k.
Pełny tekst źródłaPeriyasamy, Gnanaprakasam, Selvaraju Thangavelu i Saravanan Muthupandian. "Single-Step Synthesis of Ag Hexagonal Nanoplate-Decorated Reduced Graphene Oxide and Its Cytotoxicity Studies". Oxidative Medicine and Cellular Longevity 2023 (1.07.2023): 1–13. http://dx.doi.org/10.1155/2023/4466394.
Pełny tekst źródłaSedki, Mohammed, Mona B. Mohamed, Manal Fawzy, Dalia A. Abdelrehim i Mohamed M. S. A. Abdel-Mottaleb. "Phytosynthesis of silver–reduced graphene oxide (Ag–RGO) nanocomposite with an enhanced antibacterial effect using Potamogeton pectinatus extract". RSC Advances 5, nr 22 (2015): 17358–65. http://dx.doi.org/10.1039/c4ra13117g.
Pełny tekst źródłaChalla, Maalathi, M. R. Ambika, S. R. Usharani, Basappa C. Yallur i Vinayak Adimule. "Study on Optical Properties of Cu-MOF Nano Metal Oxide Composites". Applied Mechanics and Materials 908 (2.08.2022): 19–28. http://dx.doi.org/10.4028/p-266wz9.
Pełny tekst źródłaShaikh, Aasiya, Smrutiranjan Parida i Sivasambu Böhm. "One step eco-friendly synthesis of Ag–reduced graphene oxide nanocomposite by phytoreduction for sensitive nitrite determination". RSC Advances 6, nr 102 (2016): 100383–91. http://dx.doi.org/10.1039/c6ra23655c.
Pełny tekst źródłaBai, Rui, Yunpeng Zhao, Cuiying Lu, Yu Meng, Wenwen Gao, Yan Wang, Rui Dang, Miao Mu, Jinxi Wang i Yurong Jiao. "Sonochemical synthesis and electrochemical performance of reduced graphene oxide/cerium dioxide nanocomposites". Journal of Chemical Research 47, nr 2 (marzec 2023): 174751982311587. http://dx.doi.org/10.1177/17475198231158745.
Pełny tekst źródłaFarouk, A., S. El-Sayed Saeed, S. Sharaf i M. M. Abd El-Hady. "Photocatalytic activity and antibacterial properties of linen fabric using reduced graphene oxide/silver nanocomposite". RSC Advances 10, nr 68 (2020): 41600–41611. http://dx.doi.org/10.1039/d0ra07544b.
Pełny tekst źródłaHuang, Manman, Yanyan Wang, Shuyang Ying, Zhekun Wu, Weixiao Liu, Da Chen i Changsi Peng. "Synthesis of Cu2O-Modified Reduced Graphene Oxide for NO2 Sensors". Sensors 21, nr 6 (11.03.2021): 1958. http://dx.doi.org/10.3390/s21061958.
Pełny tekst źródłaCuenca-Bracamonte, Quimberly, Mehrdad Yazdani-Pedram i Héctor Aguilar-Bolados. "Electrical Properties of Polyetherimide-Based Nanocomposites Filled with Reduced Graphene Oxide and Graphene Oxide-Barium Titanate-Based Hybrid Nanoparticles". Polymers 14, nr 20 (11.10.2022): 4266. http://dx.doi.org/10.3390/polym14204266.
Pełny tekst źródłaN. Thangaraj, N. Joseph John i C. Gnana Sambandam. "An Improved Method of Synthesis of Graphene Oxide(GO) and Reduced Graphene Oxide(rGO) Nanocomposites". International Journal of Current Research and Review 15, nr 05 (2023): 10–15. http://dx.doi.org/10.31782/ijcrr.2023.15503.
Pełny tekst źródłaAldosari, Mohammad A., Khaled Bin Bandar Alsaud, Ali Othman, Mohammed Al-Hindawi, Nadimul Haque Faisal, Rehan Ahmed, Feven Mattwes Michael, Mohan Raj Krishnan i Edreese Asharaeh. "Microwave Irradiation Synthesis and Characterization of Reduced-(Graphene Oxide-(Polystyrene-Polymethyl Methacrylate))/Silver Nanoparticle Nanocomposites and Their Anti-Microbial Activity". Polymers 12, nr 5 (18.05.2020): 1155. http://dx.doi.org/10.3390/polym12051155.
Pełny tekst źródłaModafferi, Vincenza, Saveria Santangelo, Michele Fiore, Enza Fazio, Claudia Triolo, Salvatore Patanè, Riccardo Ruffo i Maria G. Musolino. "Transition Metal Oxides on Reduced Graphene Oxide Nanocomposites: Evaluation of Physicochemical Properties". Journal of Nanomaterials 2019 (11.04.2019): 1–9. http://dx.doi.org/10.1155/2019/1703218.
Pełny tekst źródłaPathak, Purnendu Kumar, Anil Kumar i Bhim Bali Prasad. "A novel electrocatalytic nanocomposite of reduced graphene oxide/silver nanocube hybrid decorated imprinted polymer for ultra-trace sensing of temozolomide". New Journal of Chemistry 42, nr 16 (2018): 13486–96. http://dx.doi.org/10.1039/c8nj01824c.
Pełny tekst źródłaOnyszko, Magdalena, Karolina Urbas, Malgorzata Aleksandrzak i Ewa Mijowska. "Reduced graphene oxide and inorganic nanoparticles composites – synthesis and characterization". Polish Journal of Chemical Technology 17, nr 4 (1.12.2015): 95–103. http://dx.doi.org/10.1515/pjct-2015-0074.
Pełny tekst źródłaLiao, Jianming, Shuaiming He, Shasha Guo, Pengcheng Luan, Lihuan Mo i Jun Li. "Antibacterial Performance of a Mussel-Inspired Polydopamine-Treated Ag/Graphene Nanocomposite Material". Materials 12, nr 20 (15.10.2019): 3360. http://dx.doi.org/10.3390/ma12203360.
Pełny tekst źródłaKumar, Vijay, Rajeev Kumar Gupta, Ravi Kumar Gundampati, Devendra Kumar Singh, Sweta Mohan, Syed Hadi Hasan i Manisha Malviya. "Enhanced electron transfer mediated detection of hydrogen peroxide using a silver nanoparticle–reduced graphene oxide–polyaniline fabricated electrochemical sensor". RSC Advances 8, nr 2 (2018): 619–31. http://dx.doi.org/10.1039/c7ra11466d.
Pełny tekst źródłaStrankowski, Michał, Damian Włodarczyk, Łukasz Piszczyk i Justyna Strankowska. "Polyurethane Nanocomposites Containing Reduced Graphene Oxide, FTIR, Raman, and XRD Studies". Journal of Spectroscopy 2016 (2016): 1–6. http://dx.doi.org/10.1155/2016/7520741.
Pełny tekst źródłaNguyen, Vy Tuong, Trung Lap Huynh, Tam Thanh Mai i Huy Thuc Ha. "Graphene synthesis by hydrazine and reduced thermal expansion graphite oxide and application in the preparation of nano-composite PMMA/graphene". Science and Technology Development Journal 19, nr 4 (31.12.2016): 214–26. http://dx.doi.org/10.32508/stdj.v19i4.622.
Pełny tekst źródłaPandey, Pratima, Rajashree Sahoo, Khusbu Singh, Sanghamitra Pati, Jose Mathew, Avinash Chandra Pandey, Rajni Kant i in. "Drug Resistance Reversal Potential of Nanoparticles/Nanocomposites via Antibiotic’s Potentiation in Multi Drug Resistant P. aeruginosa". Nanomaterials 12, nr 1 (30.12.2021): 117. http://dx.doi.org/10.3390/nano12010117.
Pełny tekst źródłaRakkimuthu, R., S. Aarthi, E. Neelamathi, P. Sathishkumar, A. M. Anandakumar i D. Sowmiya. "GREEN SYNTHESIS OF REDUCED GRAPHENE OXIDE SILVER NANOCOMPOSITE USING Anisomeles malabarica (L.) R. BR. LEAF EXTRACT AND ITS ANTIBACTERIAL ACTIVITY". Rasayan Journal of Chemistry 15, nr 01 (2022): 417–22. http://dx.doi.org/10.31788/rjc.2022.1516786.
Pełny tekst źródłaCobos, Mónica, Iker De-La-Pinta, Guillermo Quindós, María Jesús Fernández i María Dolores Fernández. "Synthesis, Physical, Mechanical and Antibacterial Properties of Nanocomposites Based on Poly(vinyl alcohol)/Graphene Oxide–Silver Nanoparticles". Polymers 12, nr 3 (24.03.2020): 723. http://dx.doi.org/10.3390/polym12030723.
Pełny tekst źródłaLee, Yeon-Ju, Tae-Hyun Ha, Gyu-Bong Cho, Ki-Won Kim, Jou-Hyeon Ahn i Kwon-Koo Cho. "Fabrication of Nickel Sulfide/Nitrogen-Doped Reduced Graphene Oxide Nanocomposite as Anode Material for Lithium-Ion Batteries and Its Electrochemical Performance". Journal of Nanoscience and Nanotechnology 20, nr 11 (1.11.2020): 6782–87. http://dx.doi.org/10.1166/jnn.2020.18783.
Pełny tekst źródłaKanabenja, Warrayut, i Pranut Potiyaraj. "Graphene/Thermoplastic Polyurethane Composites". Key Engineering Materials 773 (lipiec 2018): 77–81. http://dx.doi.org/10.4028/www.scientific.net/kem.773.77.
Pełny tekst źródłaPatil, Ashwini G. "Facile one pot microbe-mediated in situ synthesis and antibacterial activity of reduced graphene oxide-silver nanocomposite". Nanotechnology 33, nr 13 (7.01.2022): 135603. http://dx.doi.org/10.1088/1361-6528/ac4521.
Pełny tekst źródłaNaeem, Hina, Hafiz Muhammad Tofil, Mohamed Soliman, Abdul Hai, Syeda Huma H. Zaidi, Nadeem Kizilbash, Daliyah Alruwaili, Muhammad Ajmal i Muhammad Siddiq. "Reduced Graphene Oxide-Zinc Sulfide Nanocomposite Decorated with Silver Nanoparticles for Wastewater Treatment by Adsorption, Photocatalysis and Antimicrobial Action". Molecules 28, nr 3 (17.01.2023): 926. http://dx.doi.org/10.3390/molecules28030926.
Pełny tekst źródłaZhang, Yanli, Hongjun Liu, Zhongming Yang, Shunlin Ji, Junfang Wang, Pengfei Pang, Lili Feng, Hongbin Wang, Zhan Wu i Wenrong Yang. "An acetylcholinesterase inhibition biosensor based on a reduced graphene oxide/silver nanocluster/chitosan nanocomposite for detection of organophosphorus pesticides". Analytical Methods 7, nr 15 (2015): 6213–19. http://dx.doi.org/10.1039/c5ay01439e.
Pełny tekst źródłaXu, Xuan, Qiulin Zou, Yunsong Yuan, Fangying Ji, Zihong Fan i Bi Zhou. "Preparation of BiVO4-Graphene Nanocomposites and Their Photocatalytic Activity". Journal of Nanomaterials 2014 (2014): 1–6. http://dx.doi.org/10.1155/2014/401697.
Pełny tekst źródłaJacovone, Raynara M. S., Jaqueline J. S. Soares, Thainá S. Sousa, Flávia R. O. Silva, Rafael H. L. Garcia, Hang N. Nguyen, Debora F. Rodrigues i Solange K. Sakata. "Antibacterial activity of silver/reduced graphene oxide nanocomposite synthesized by sustainable process". Energy, Ecology and Environment 4, nr 6 (22.10.2019): 318–24. http://dx.doi.org/10.1007/s40974-019-00136-3.
Pełny tekst źródłaElshypany, Rania, Hanaa Selim, K. Zakaria, Ahmed H. Moustafa, Sadeek A. Sadeek, S. I. Sharaa, Patrice Raynaud i Amr A. Nada. "Magnetic ZnO Crystal Nanoparticle Growth on Reduced Graphene Oxide for Enhanced Photocatalytic Performance under Visible Light Irradiation". Molecules 26, nr 8 (14.04.2021): 2269. http://dx.doi.org/10.3390/molecules26082269.
Pełny tekst źródłaYilmaz Dogan, Hazal, Yasin Altin i Ayşe Çelik Bedeloğlu. "Fabrication and properties of graphene oxide and reduced graphene oxide reinforced Poly(Vinyl alcohol) nanocomposite films for packaging applications". Polymers and Polymer Composites 30 (styczeń 2022): 096739112211133. http://dx.doi.org/10.1177/09673911221113328.
Pełny tekst źródłaHwa, Kuo-Yuan, Tata Sanjay Kanna Sharma i Anindita Ganguly. "Design strategy of rGO–HNT–AgNPs based hybrid nanocomposite with enhanced performance for electrochemical detection of 4-nitrophenol". Inorganic Chemistry Frontiers 7, nr 10 (2020): 1981–94. http://dx.doi.org/10.1039/d0qi00006j.
Pełny tekst źródłaNiasar, Mojtaba Moslehi, Mohammad Jafar Molaei i Alireza Aghaei. "Microwave absorption properties of Zn-doped barium ferrite (BaFe12-x Zn x O19) decorated reduced graphene oxide". International Journal of Materials Research 112, nr 6 (1.05.2021): 465–73. http://dx.doi.org/10.1515/ijmr-2020-8073.
Pełny tekst źródłaRoy, Indranil, Dipak Rana, Gunjan Sarkar, Amartya Bhattacharyya, Nayan Ranjan Saha, Soumya Mondal, Sutanuka Pattanayak, Sanatan Chattopadhyay i Dipankar Chattopadhyay. "Physical and electrochemical characterization of reduced graphene oxide/silver nanocomposites synthesized by adopting a green approach". RSC Advances 5, nr 32 (2015): 25357–64. http://dx.doi.org/10.1039/c4ra16197a.
Pełny tekst źródłaRañola, Rey Alfred G., Justine M. Kalaw i Fortunato B. Sevilla. "Graphene/Nylon-6 Chemiresistor Sensor for Trimethylamine Gas Sensing". Applied Mechanics and Materials 492 (styczeń 2014): 321–25. http://dx.doi.org/10.4028/www.scientific.net/amm.492.321.
Pełny tekst źródłaMun, Wai Hong, Noramirulikram Abdul Halim, Fatema Khatun i Azrina Abd Aziz. "Ag/RGO Photocatalyst for Methyl Orange Treatment". Materials Science Forum 1056 (14.03.2022): 119–25. http://dx.doi.org/10.4028/p-80g73u.
Pełny tekst źródłaOmar, Fatin Saiha, Huang Nay Ming, Syed Muhamad Hafiz i Lim Hong Ngee. "Microwave Synthesis of Zinc Oxide/Reduced Graphene Oxide Hybrid for Adsorption-Photocatalysis Application". International Journal of Photoenergy 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/176835.
Pełny tekst źródłaLi, Shin-Ming, Yu-Sheng Wang, Sheng-Tsung Hsiao, Wei-Hao Liao, Chi-Wen Lin, Shin-Yi Yang, Hsi-Wen Tien, Chen-Chi M. Ma i Chi-Chang Hu. "Fabrication of a silver nanowire-reduced graphene oxide-based electrochemical biosensor and its enhanced sensitivity in the simultaneous determination of ascorbic acid, dopamine, and uric acid". Journal of Materials Chemistry C 3, nr 36 (2015): 9444–53. http://dx.doi.org/10.1039/c5tc01564b.
Pełny tekst źródłaDu, Yong, Jia Li, Jiayue Xu i Per Eklund. "Thermoelectric Properties of Reduced Graphene Oxide/Bi2Te3 Nanocomposites". Energies 12, nr 12 (24.06.2019): 2430. http://dx.doi.org/10.3390/en12122430.
Pełny tekst źródłaThakur, Suman, i Niranjan Karak. "Multi-stimuli responsive smart elastomeric hyperbranched polyurethane/reduced graphene oxide nanocomposites". J. Mater. Chem. A 2, nr 36 (2014): 14867–75. http://dx.doi.org/10.1039/c4ta02497d.
Pełny tekst źródłaAlgethami, Merfat. "Bismuth/bismuth oxide-incorporated reduced graphene oxide nanocomposite: synthesis, characterisation, and photocatalytic activity". Materials Research Express 9, nr 2 (1.02.2022): 025001. http://dx.doi.org/10.1088/2053-1591/ac4ebb.
Pełny tekst źródłaMinář, Jaroslav, Jan Doležal i Jiří Brožek. "The effect of nanocomposite synthesis and the drying procedure of graphene oxide dispersion on the polycaprolactone/graphene oxide nanocomposite properties". Polymers and Polymer Composites 30 (styczeń 2022): 096739112110689. http://dx.doi.org/10.1177/09673911211068923.
Pełny tekst źródłaAnsari, Akhalakur Rahman, Sajid Ali Ansari, Nazish Parveen, Mohammad Omaish Ansari i Zurina Osman. "Silver Nanoparticles Embedded on Reduced Graphene Oxide@Copper Oxide Nanocomposite for High Performance Supercapacitor Applications". Materials 14, nr 17 (3.09.2021): 5032. http://dx.doi.org/10.3390/ma14175032.
Pełny tekst źródłaManikandan, Venkatachalam, Ramakrishnan Elancheran, Palanisamy Revathi, Umapathy Vanitha, Palani Suganya i Kuppusamy Krishnasamy. "Synthesis, Characterization, Photocatalytic and Electrochemical Studies of Reduced Graphene Oxide Doped Nickel Oxide Nanocomposites". Asian Journal of Chemistry 33, nr 2 (2021): 411–22. http://dx.doi.org/10.14233/ajchem.2021.22979.
Pełny tekst źródłaReddy, K. M., i Goswami Kajal. "Synthesis of rGO layered Zn-Ti/Nb2O5 nanocomposite and its type for enhanced photocatalysis". i-manager's Journal on Material Science 9, nr 4 (2022): 23. http://dx.doi.org/10.26634/jms.9.4.18524.
Pełny tekst źródłaWei, Shanshan, Leyu Wang, Mulin Yu, Xiangyang Xu i Xianhong Chen. "Hydrothermal Synthesis of Reduced Graphene Oxide/Silver Nanocomposite Without Addition of Reducing Agent". Journal of Bionanoscience 8, nr 4 (1.08.2014): 298–301. http://dx.doi.org/10.1166/jbns.2014.1228.
Pełny tekst źródłaChen, Long, Zhi Li i Mingguang Chen. "Facile production of silver-reduced graphene oxide nanocomposite with highly effective antibacterial performance". Journal of Environmental Chemical Engineering 7, nr 3 (czerwiec 2019): 103160. http://dx.doi.org/10.1016/j.jece.2019.103160.
Pełny tekst źródłaSharma, Neha, Sathish Panneer Selvam i Kyusik Yun. "Electrochemical detection of amikacin sulphate using reduced graphene oxide and silver nanoparticles nanocomposite". Applied Surface Science 512 (maj 2020): 145742. http://dx.doi.org/10.1016/j.apsusc.2020.145742.
Pełny tekst źródła