Artykuły w czasopismach na temat „Recurrent Neural Network architecture”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Recurrent Neural Network architecture”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Back, Andrew D., i Ah Chung Tsoi. "A Low-Sensitivity Recurrent Neural Network". Neural Computation 10, nr 1 (1.01.1998): 165–88. http://dx.doi.org/10.1162/089976698300017935.
Pełny tekst źródłaПаршин, А. И., М. Н. Аралов, В. Ф. Барабанов i Н. И. Гребенникова. "RANDOM MULTI-MODAL DEEP LEARNING IN THE PROBLEM OF IMAGE RECOGNITION". ВЕСТНИК ВОРОНЕЖСКОГО ГОСУДАРСТВЕННОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА, nr 4 (20.10.2021): 21–26. http://dx.doi.org/10.36622/vstu.2021.17.4.003.
Pełny tekst źródłaGallicchio, Claudio, i Alessio Micheli. "Fast and Deep Graph Neural Networks". Proceedings of the AAAI Conference on Artificial Intelligence 34, nr 04 (3.04.2020): 3898–905. http://dx.doi.org/10.1609/aaai.v34i04.5803.
Pełny tekst źródłaVASSILIADIS, STAMATIS, GERALD G. PECHANEK i JOSÉ G. DELGADO-FRIAS. "SPIN: THE SEQUENTIAL PIPELINED NEUROEMULATOR". International Journal on Artificial Intelligence Tools 02, nr 01 (marzec 1993): 117–32. http://dx.doi.org/10.1142/s0218213093000084.
Pełny tekst źródłaUzdiaev, M. Yu, R. N. Iakovlev, D. M. Dudarenko i A. D. Zhebrun. "Identification of a Person by Gait in a Video Stream". Proceedings of the Southwest State University 24, nr 4 (4.02.2021): 57–75. http://dx.doi.org/10.21869/2223-1560-2020-24-4-57-75.
Pełny tekst źródłaKalinin, Maxim, Vasiliy Krundyshev i Evgeny Zubkov. "Estimation of applicability of modern neural network methods for preventing cyberthreats to self-organizing network infrastructures of digital economy platforms",. SHS Web of Conferences 44 (2018): 00044. http://dx.doi.org/10.1051/shsconf/20184400044.
Pełny tekst źródłaCaniago, Afif Ilham, Wilis Kaswidjanti i Juwairiah Juwairiah. "Recurrent Neural Network With Gate Recurrent Unit For Stock Price Prediction". Telematika 18, nr 3 (31.10.2021): 345. http://dx.doi.org/10.31315/telematika.v18i3.6650.
Pełny tekst źródłaTELMOUDI, ACHRAF JABEUR, HATEM TLIJANI, LOTFI NABLI, MAARUF ALI i RADHI M'HIRI. "A NEW RBF NEURAL NETWORK FOR PREDICTION IN INDUSTRIAL CONTROL". International Journal of Information Technology & Decision Making 11, nr 04 (lipiec 2012): 749–75. http://dx.doi.org/10.1142/s0219622012500198.
Pełny tekst źródłaZiemke, Tom. "Radar Image Segmentation Using Self-Adapting Recurrent Networks". International Journal of Neural Systems 08, nr 01 (luty 1997): 47–54. http://dx.doi.org/10.1142/s0129065797000070.
Pełny tekst źródłaK, Karthika, Tejashree K, Naveen Rajan M. i Namita R. "Towards Strong AI with Analog Neural Chips". International Journal of Innovative Research in Advanced Engineering 10, nr 06 (23.06.2023): 394–99. http://dx.doi.org/10.26562/ijirae.2023.v1006.28.
Pełny tekst źródłaVinayakumar, R., K. P. Soman i Prabaharan Poornachandran. "Evaluation of Recurrent Neural Network and its Variants for Intrusion Detection System (IDS)". International Journal of Information System Modeling and Design 8, nr 3 (lipiec 2017): 43–63. http://dx.doi.org/10.4018/ijismd.2017070103.
Pełny tekst źródłaJeon, DaeHyeon, i Min-Suk Kim. "Deep-Learning-Based Sequence Causal Long-Term Recurrent Convolutional Network for Data Fusion Using Video Data". Electronics 12, nr 5 (24.02.2023): 1115. http://dx.doi.org/10.3390/electronics12051115.
Pełny tekst źródłaWu, Yan, Aoming Liu, Zhiwu Huang, Siwei Zhang i Luc Van Gool. "Neural Architecture Search as Sparse Supernet". Proceedings of the AAAI Conference on Artificial Intelligence 35, nr 12 (18.05.2021): 10379–87. http://dx.doi.org/10.1609/aaai.v35i12.17243.
Pełny tekst źródłaMohammed, Ahmed Salahuddin, Amin Salih Mohammed i Shahab Wahhab Kareem. "Deep Learning and Neural Network-Based Wind Speed Prediction Model". International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 30, nr 03 (czerwiec 2022): 403–25. http://dx.doi.org/10.1142/s021848852240013x.
Pełny tekst źródłaHan, Bing, Cheng Wang i Kaushik Roy. "Oscillatory Fourier Neural Network: A Compact and Efficient Architecture for Sequential Processing". Proceedings of the AAAI Conference on Artificial Intelligence 36, nr 6 (28.06.2022): 6838–46. http://dx.doi.org/10.1609/aaai.v36i6.20640.
Pełny tekst źródłaAzpiazu, Ion Madrazo, i Maria Soledad Pera. "Multiattentive Recurrent Neural Network Architecture for Multilingual Readability Assessment". Transactions of the Association for Computational Linguistics 7 (listopad 2019): 421–36. http://dx.doi.org/10.1162/tacl_a_00278.
Pełny tekst źródłaAlashban, Adal A., Mustafa A. Qamhan, Ali H. Meftah i Yousef A. Alotaibi. "Spoken Language Identification System Using Convolutional Recurrent Neural Network". Applied Sciences 12, nr 18 (13.09.2022): 9181. http://dx.doi.org/10.3390/app12189181.
Pełny tekst źródłaMaduranga, Kehelwala D. G., Kyle E. Helfrich i Qiang Ye. "Complex Unitary Recurrent Neural Networks Using Scaled Cayley Transform". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17.07.2019): 4528–35. http://dx.doi.org/10.1609/aaai.v33i01.33014528.
Pełny tekst źródłaKabildjanov, A. S., Ch Z. Okhunboboeva i S. Yo Ismailov. "Intelligent forecasting of growth and development of fruit trees by deep learning recurrent neural networks". IOP Conference Series: Earth and Environmental Science 1206, nr 1 (1.06.2023): 012015. http://dx.doi.org/10.1088/1755-1315/1206/1/012015.
Pełny tekst źródłaPal, Subarno, Soumadip Ghosh i Amitava Nag. "Sentiment Analysis in the Light of LSTM Recurrent Neural Networks". International Journal of Synthetic Emotions 9, nr 1 (styczeń 2018): 33–39. http://dx.doi.org/10.4018/ijse.2018010103.
Pełny tekst źródłaMinin, Alexey, Alois Knoll i Hans-Georg Zimmermann. "Complex Valued Recurrent Neural Network: From Architecture to Training". Journal of Signal and Information Processing 03, nr 02 (2012): 192–97. http://dx.doi.org/10.4236/jsip.2012.32026.
Pełny tekst źródłaCamero, Andrés, Jamal Toutouh i Enrique Alba. "Random error sampling-based recurrent neural network architecture optimization". Engineering Applications of Artificial Intelligence 96 (listopad 2020): 103946. http://dx.doi.org/10.1016/j.engappai.2020.103946.
Pełny tekst źródłaLyu, Shengfei, i Jiaqi Liu. "Convolutional Recurrent Neural Networks for Text Classification". Journal of Database Management 32, nr 4 (październik 2021): 65–82. http://dx.doi.org/10.4018/jdm.2021100105.
Pełny tekst źródłaNguyen, Viet-Hung, Minh-Tuan Nguyen, Jeongsik Choi i Yong-Hwa Kim. "NLOS Identification in WLANs Using Deep LSTM with CNN Features". Sensors 18, nr 11 (20.11.2018): 4057. http://dx.doi.org/10.3390/s18114057.
Pełny tekst źródłaFREAN, MARCUS, MATT LILLEY i PHILLIP BOYLE. "IMPLEMENTING GAUSSIAN PROCESS INFERENCE WITH NEURAL NETWORKS". International Journal of Neural Systems 16, nr 05 (październik 2006): 321–27. http://dx.doi.org/10.1142/s012906570600072x.
Pełny tekst źródłaAbudu, Prince M. "CommNets: Communicating Neural Network Architectures for Resource Constrained Systems". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17.07.2019): 9909–10. http://dx.doi.org/10.1609/aaai.v33i01.33019909.
Pełny tekst źródłaWang, Xiaohui. "Design of English Translation Model Based on Recurrent Neural Network". Mathematical Problems in Engineering 2022 (25.08.2022): 1–7. http://dx.doi.org/10.1155/2022/5177069.
Pełny tekst źródłaFRASCONI, PAOLO, MARCO GORI i GIOVANNI SODA. "DAPHNE: DATA PARALLELISM NEURAL NETWORK SIMULATOR". International Journal of Modern Physics C 04, nr 01 (luty 1993): 17–28. http://dx.doi.org/10.1142/s0129183193000045.
Pełny tekst źródłaBhargava, Rupal, Shivangi Arora i Yashvardhan Sharma. "Neural Network-Based Architecture for Sentiment Analysis in Indian Languages". Journal of Intelligent Systems 28, nr 3 (26.07.2019): 361–75. http://dx.doi.org/10.1515/jisys-2017-0398.
Pełny tekst źródłaSibruk, Leonid, i Ihor Zakutynskyi. "Recurrent Neural Networks for Time Series Forecasting. Choosing the best Architecture for Passenger Traffic Data". Electronics and Control Systems 2, nr 72 (23.09.2022): 38–44. http://dx.doi.org/10.18372/1990-5548.72.16941.
Pełny tekst źródłaWang, Jie, Jun Wang, Wen Fang i Hongli Niu. "Financial Time Series Prediction Using Elman Recurrent Random Neural Networks". Computational Intelligence and Neuroscience 2016 (2016): 1–14. http://dx.doi.org/10.1155/2016/4742515.
Pełny tekst źródłaBack, A. D., i A. C. Tsoi. "FIR and IIR Synapses, a New Neural Network Architecture for Time Series Modeling". Neural Computation 3, nr 3 (wrzesień 1991): 375–85. http://dx.doi.org/10.1162/neco.1991.3.3.375.
Pełny tekst źródłaKilic, Ergin, i Melik Dolen. "Prediction of slip in cable-drum systems using structured neural networks". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 228, nr 3 (26.04.2013): 441–56. http://dx.doi.org/10.1177/0954406213487471.
Pełny tekst źródłaLalapura, Varsha S., J. Amudha i Hariramn Selvamuruga Satheesh. "Recurrent Neural Networks for Edge Intelligence". ACM Computing Surveys 54, nr 4 (maj 2021): 1–38. http://dx.doi.org/10.1145/3448974.
Pełny tekst źródłaAndreoli, Louis, Xavier Porte, Stéphane Chrétien, Maxime Jacquot, Laurent Larger i Daniel Brunner. "Boolean learning under noise-perturbations in hardware neural networks". Nanophotonics 9, nr 13 (24.06.2020): 4139–47. http://dx.doi.org/10.1515/nanoph-2020-0171.
Pełny tekst źródłaObrubov, M., i S. Kirillova. "USING LSTM NETWORK FOR SOLVING THE MULTIDIMENTIONAL TIME SERIES FORECASTING PROBLEM". National Association of Scientists 2, nr 68 (1.07.2021): 43–48. http://dx.doi.org/10.31618/nas.2413-5291.2021.2.68.450.
Pełny tekst źródłaDuarte Soares, Lucas, Altamira de Souza Queiroz, Gloria P. López, Edgar M. Carreño-Franco, Jesús M. López-Lezama i Nicolás Muñoz-Galeano. "BiGRU-CNN Neural Network Applied to Electric Energy Theft Detection". Electronics 11, nr 5 (24.02.2022): 693. http://dx.doi.org/10.3390/electronics11050693.
Pełny tekst źródłaAhmad, Zeeshan, Adnan Shahid Khan, Kashif Nisar, Iram Haider, Rosilah Hassan, Muhammad Reazul Haque, Seleviawati Tarmizi i Joel J. P. C. Rodrigues. "Anomaly Detection Using Deep Neural Network for IoT Architecture". Applied Sciences 11, nr 15 (30.07.2021): 7050. http://dx.doi.org/10.3390/app11157050.
Pełny tekst źródłaRafi, Quazi Ghulam, Mohammed Noman, Sadia Zahin Prodhan, Sabrina Alam i Dip Nandi. "Comparative Analysis of Three Improved Deep Learning Architectures for Music Genre Classification". International Journal of Information Technology and Computer Science 13, nr 2 (8.04.2021): 1–14. http://dx.doi.org/10.5815/ijitcs.2021.02.01.
Pełny tekst źródłaEigel, Martin, Marvin Haase i Johannes Neumann. "Topology Optimisation under Uncertainties with Neural Networks". Algorithms 15, nr 7 (12.07.2022): 241. http://dx.doi.org/10.3390/a15070241.
Pełny tekst źródłaHuang, Fangwan, Shijie Zhuang, Zhiyong Yu, Yuzhong Chen i Kun Guo. "Adaptive Modularized Recurrent Neural Networks for Electric Load Forecasting". Journal of Database Management 34, nr 1 (18.05.2023): 1–18. http://dx.doi.org/10.4018/jdm.323436.
Pełny tekst źródłaSeong-Whan Lee i Hee-Heon Song. "A new recurrent neural-network architecture for visual pattern recognition". IEEE Transactions on Neural Networks 8, nr 2 (marzec 1997): 331–40. http://dx.doi.org/10.1109/72.557671.
Pełny tekst źródłaMittal, Nikita, i Akash Saxena. "Layer Recurrent Neural Network based Power System Load Forecasting". TELKOMNIKA Indonesian Journal of Electrical Engineering 16, nr 3 (1.12.2015): 423. http://dx.doi.org/10.11591/tijee.v16i3.1632.
Pełny tekst źródłaVoevoda, Aleksander, i Victor Shipagin. "Structural transformations of a neural network controller with a recurrent network type". Transaction of Scientific Papers of the Novosibirsk State Technical University, nr 3 (18.11.2020): 7–16. http://dx.doi.org/10.17212/2307-6879-2020-3-7-16.
Pełny tekst źródłaPaliwal, Shekhar, i Shivang Sharma. "Stock Prediction using Neural Networks and Evolution Algorithm". International Journal for Research in Applied Science and Engineering Technology 10, nr 4 (30.04.2022): 661–71. http://dx.doi.org/10.22214/ijraset.2022.41331.
Pełny tekst źródłaPark, Dong-Chul. "Multiresolution-based bilinear recurrent neural network". Knowledge and Information Systems 19, nr 2 (4.09.2008): 235–48. http://dx.doi.org/10.1007/s10115-008-0155-1.
Pełny tekst źródłaDarmawahyuni, Annisa, Siti Nurmaini, Sukemi, Wahyu Caesarendra, Vicko Bhayyu, M. Naufal Rachmatullah i Firdaus. "Deep Learning with a Recurrent Network Structure in the Sequence Modeling of Imbalanced Data for ECG-Rhythm Classifier". Algorithms 12, nr 6 (7.06.2019): 118. http://dx.doi.org/10.3390/a12060118.
Pełny tekst źródłaAkdeniz, Esra, Erol Egrioglu, Eren Bas i Ufuk Yolcu. "An ARMA Type Pi-Sigma Artificial Neural Network for Nonlinear Time Series Forecasting". Journal of Artificial Intelligence and Soft Computing Research 8, nr 2 (1.04.2018): 121–32. http://dx.doi.org/10.1515/jaiscr-2018-0009.
Pełny tekst źródłaZhu, Zhenshu, Yuming Bo i Changhui Jiang. "A MEMS Gyroscope Noise Suppressing Method Using Neural Architecture Search Neural Network". Mathematical Problems in Engineering 2019 (21.11.2019): 1–9. http://dx.doi.org/10.1155/2019/5491243.
Pełny tekst źródłaGraves, Daniel, i Witold Pedrycz. "Fuzzy prediction architecture using recurrent neural networks". Neurocomputing 72, nr 7-9 (marzec 2009): 1668–78. http://dx.doi.org/10.1016/j.neucom.2008.07.009.
Pełny tekst źródła