Artykuły w czasopismach na temat „Reconfigurable logic gates”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Reconfigurable logic gates”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Vlădescu, Elena, and Daniela Dragoman. "Reconfigurable Plasmonic Logic Gates." Plasmonics 13, no. 6 (2018): 2189–95. http://dx.doi.org/10.1007/s11468-018-0737-z.
Pełny tekst źródłaLuo, Shijiang, Min Song, Xin Li, et al. "Reconfigurable Skyrmion Logic Gates." Nano Letters 18, no. 2 (2018): 1180–84. http://dx.doi.org/10.1021/acs.nanolett.7b04722.
Pełny tekst źródłaDíaz-Díaz, Irwin, and Eric Campos. "Toward a Voltage Reconfigurable Logic Gate." Memorias del Congreso Nacional de Control Automático 6, no. 1 (2023): 503–6. http://dx.doi.org/10.58571/cnca.amca.2023.107.
Pełny tekst źródłaQi, Mingxuan, Peijun Shi, Xiaokang Zhang, et al. "Reconfigurable DNA triplex structure for pH responsive logic gates." RSC Advances 13, no. 15 (2023): 9864–70. http://dx.doi.org/10.1039/d3ra00536d.
Pełny tekst źródłaMedina‐Santiago, A., Mario Alfredo Reyes‐Barranca, Ignacio Algredo‐Badillo, Alfonso Martinez Cruz, Kelsey Alejandra Ramírez Gutiérrez, and Adrián Eleazar Cortés‐Barrón. "Reconfigurable arithmetic logic unit designed with threshold logic gates." IET Circuits, Devices & Systems 13, no. 1 (2018): 21–30. http://dx.doi.org/10.1049/iet-cds.2018.0046.
Pełny tekst źródłaZou, Jianping, Kang Zhang, Weifan Cai, Tupei Chen, Arokia Nathan, and Qing Zhang. "Optical-reconfigurable carbon nanotube and indium-tin-oxide complementary thin-film transistor logic gates." Nanoscale 10, no. 27 (2018): 13122–29. http://dx.doi.org/10.1039/c8nr01358f.
Pełny tekst źródłaRothenbuhler, Adrian, Thanh Tran, Elisa Smith, Vishal Saxena, and Kristy Campbell. "Reconfigurable Threshold Logic Gates using Memristive Devices." Journal of Low Power Electronics and Applications 3, no. 2 (2013): 174–93. http://dx.doi.org/10.3390/jlpea3020174.
Pełny tekst źródłaRaitza, Michael, Steffen Marcker, Jens Trommer, et al. "Quantitative Characterization of Reconfigurable Transistor Logic Gates." IEEE Access 8 (2020): 112598–614. http://dx.doi.org/10.1109/access.2020.3001352.
Pełny tekst źródłaZhang, Yuqing, Zheng Peng, Zhicheng Wang, et al. "Non-Volatile Reconfigurable Compact Photonic Logic Gates Based on Phase-Change Materials." Nanomaterials 13, no. 8 (2023): 1375. http://dx.doi.org/10.3390/nano13081375.
Pełny tekst źródłaYang, Liu, Wendi Li, Ying Tao, Kaifeng Dong, Fang Jin, and Huihui Li. "Reconfigurable and reusable skyrmion logic gates with circular track." AIP Advances 13, no. 2 (2023): 025227. http://dx.doi.org/10.1063/9.0000402.
Pełny tekst źródłaGong, Xue, Jie Wei, Jing Liu, Ruomeng Li, Xiaoqing Liu, and Fuan Wang. "Programmable intracellular DNA biocomputing circuits for reliable cell recognitions." Chemical Science 10, no. 10 (2019): 2989–97. http://dx.doi.org/10.1039/c8sc05217d.
Pełny tekst źródłaButler, J., M. Shachar, B. Lee, et al. "Reconfigurable and non-volatile vertical magnetic logic gates." Journal of Applied Physics 115, no. 16 (2014): 163903. http://dx.doi.org/10.1063/1.4873297.
Pełny tekst źródłaHai, Pham Nam, Satoshi Sugahara, and Masaaki Tanaka. "Reconfigurable Logic Gates Using Single-Electron Spin Transistors." Japanese Journal of Applied Physics 46, no. 10A (2007): 6579–85. http://dx.doi.org/10.1143/jjap.46.6579.
Pełny tekst źródłaKaya, Savas, Hesham F. A. Hamed, Darwin T. Ting, and Gregory Creech. "Reconfigurable threshold logic gates with nanoscale DG-MOSFETs." Solid-State Electronics 51, no. 10 (2007): 1301–7. http://dx.doi.org/10.1016/j.sse.2007.08.011.
Pełny tekst źródłaHassan, S., D. Chack, and L. Pavesi. "High extinction ratio thermo-optic based reconfigurable optical logic gates for programmable PICs." AIP Advances 12, no. 5 (2022): 055304. http://dx.doi.org/10.1063/5.0086185.
Pełny tekst źródłaSHAHVERDIEV, E. M. "PARAMETER MISMATCHES, CHAOS SYNCHRONIZATION AND FAST DYNAMIC LOGIC GATES." International Journal of Modern Physics B 24, no. 23 (2010): 4471–79. http://dx.doi.org/10.1142/s0217979210055731.
Pełny tekst źródłaSheng, Yi Yan, and Wen Bo Liu. "Function Expansion of a Chaotic Logic Unit." Advanced Materials Research 171-172 (December 2010): 283–87. http://dx.doi.org/10.4028/www.scientific.net/amr.171-172.283.
Pełny tekst źródłaPeng, Haipeng, Gang Hu, Lixiang Li, Yixian Yang, and Jinghua Xiao. "Constructing Dynamic Multiple-Input Multiple-Output Logic Gates." Mathematical Problems in Engineering 2011 (2011): 1–12. http://dx.doi.org/10.1155/2011/380345.
Pełny tekst źródłaAfanador-Delgado, Samuel Mardoqueo, José Luis Echenausía-Monroy, Guillermo Huerta-Cuellar, Juan Hugo García-López, Erick Emiliano Lopez-Muñoz, and Rider Jaimes-Reátegui. "Logic Gate Generation in a Monostable Optical System: Improving the Erbium-Doped Fiber Laser Reconfigurable Logic Operation." Photonics 11, no. 12 (2024): 1103. http://dx.doi.org/10.3390/photonics11121103.
Pełny tekst źródłaTella, Sherif A., Nouha Alcheikh, and Mohammad I. Younis. "A single MEMS resonator for reconfigurable multifunctional logic gates." Journal of Micromechanics and Microengineering 28, no. 9 (2018): 095002. http://dx.doi.org/10.1088/1361-6439/aac13d.
Pełny tekst źródłaBehnia, S., Z. Pazhotan, N. Ezzati, and A. Akhshani. "Reconfigurable chaotic logic gates based on novel chaotic circuit." Chaos, Solitons & Fractals 69 (December 2014): 74–80. http://dx.doi.org/10.1016/j.chaos.2014.08.011.
Pełny tekst źródłaLi, Lixiang, Chunyu Yang, Sili Hui, et al. "A Reconfigurable Logic Cell Based on a Simple Dynamical System." Mathematical Problems in Engineering 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/735189.
Pełny tekst źródłaGauci, Gabriel, and David C. Magri. "Solvent-polarity reconfigurable fluorescent 4-piperazino-N-aryl-1,8-naphthalimide crown ether logic gates." RSC Advances 12, no. 54 (2022): 35270–78. http://dx.doi.org/10.1039/d2ra07568g.
Pełny tekst źródłaHe, Kaiyu, Yong Li, Binbin Xiang, et al. "A universal platform for building molecular logic circuits based on a reconfigurable three-dimensional DNA nanostructure." Chemical Science 6, no. 6 (2015): 3556–64. http://dx.doi.org/10.1039/c5sc00371g.
Pełny tekst źródłaNishimoto, Shohei, Yuki Yamanashi, and Nobuyuki Yoshikawa. "Design Method of Single-Flux-Quantum Logic Circuits Using Dynamically Reconfigurable Logic Gates." IEEE Transactions on Applied Superconductivity 25, no. 3 (2015): 1–5. http://dx.doi.org/10.1109/tasc.2014.2387251.
Pełny tekst źródłaDragoman, Mircea, Adrian Dinescu, Daniela Dragoman, Cătălin Palade, Valentin Şerban Teodorescu, and Magdalena Lidia Ciurea. "Graphene/Ferroelectric (Ge-Doped HfO2) Adaptable Transistors Acting as Reconfigurable Logic Gates." Nanomaterials 12, no. 2 (2022): 279. http://dx.doi.org/10.3390/nano12020279.
Pełny tekst źródłaWu, Shiming. "Nonvolatile Programmable Spin-Logic Gates Show Potential in Reconfigurable Computing." MRS Bulletin 27, no. 3 (2002): 166. http://dx.doi.org/10.1557/mrs2002.56.
Pełny tekst źródłaYamanashi, Y., I. Okawa, and N. Yoshikawa. "Design Approach of Dynamically Reconfigurable Single Flux Quantum Logic Gates." IEEE Transactions on Applied Superconductivity 21, no. 3 (2011): 831–34. http://dx.doi.org/10.1109/tasc.2010.2090856.
Pełny tekst źródłaIftimie, S., A. Radu, and D. Dragoman. "Reconfigurable logic gates in nanowires with Rashba spin-orbit interaction." Physica E: Low-dimensional Systems and Nanostructures 120 (June 2020): 114064. http://dx.doi.org/10.1016/j.physe.2020.114064.
Pełny tekst źródłaNemnes, G. A., and Daniela Dragoman. "Reconfigurable quantum logic gates using Rashba controlled spin polarized currents." Physica E: Low-dimensional Systems and Nanostructures 111 (July 2019): 13–19. http://dx.doi.org/10.1016/j.physe.2019.02.021.
Pełny tekst źródłaChappanda, K. N., S. Ilyas, and M. I. Younis. "Micro-mechanical resonators for dynamically reconfigurable reduced voltage logic gates." Journal of Micromechanics and Microengineering 28, no. 5 (2018): 055009. http://dx.doi.org/10.1088/1361-6439/aaafe5.
Pełny tekst źródłaBogoni, A., L. Potì, R. Proietti, G. Meloni, F. Ponzini, and P. Ghelfi. "Regenerative and reconfigurable all-optical logic gates for ultra-fast applications." Electronics Letters 41, no. 7 (2005): 435. http://dx.doi.org/10.1049/el:20058010.
Pełny tekst źródłaDong Jian-Ji, Zhang Xin-Liang, Wang Yang, and Huang De-Xiu. "High speed reconfigurable logic gates based on single semiconductor optical amplifier." Acta Physica Sinica 57, no. 4 (2008): 2222. http://dx.doi.org/10.7498/aps.57.2222.
Pełny tekst źródłaBae, Yonghee, Kyo-Seok Lee, Sun-Mi Lee, and Kyung-Hwa Yoo. "Reconfigurable logic gates in biological crossbar neural networks using STDP learning." Biophysical Journal 122, no. 3 (2023): 437a. http://dx.doi.org/10.1016/j.bpj.2022.11.2363.
Pełny tekst źródłaJatkar, Mandar, and Kamal K. Jha. "Modeling and performance analysis of F-functionalized AGNR reconfigurable logic gates." Diamond and Related Materials 141 (January 2024): 110679. http://dx.doi.org/10.1016/j.diamond.2023.110679.
Pełny tekst źródłaRai, Sudhir, Kamal K. Jha, and Mandar Jatkar. "Ab-initio investigation on aluminum nitride nanoribbons for reconfigurable logic gates." Diamond and Related Materials 152 (February 2025): 111966. https://doi.org/10.1016/j.diamond.2025.111966.
Pełny tekst źródłaKostadinov, Atanas N., and Guennadi A. Kouzaev. "A Novel Processor for Artificial Intelligence Acceleration." WSEAS TRANSACTIONS ON CIRCUITS AND SYSTEMS 21 (July 1, 2022): 125–41. http://dx.doi.org/10.37394/23201.2022.21.14.
Pełny tekst źródłaPark, Taegyun, Yeong Rok Kim, Jihun Kim, Jinwon Lee, and Cheol Seong Hwang. "Reliable Domain‐Specific Exclusive Logic Gates Using Reconfigurable Sequential Logic Based on Antiparallel Bipolar Memristors." Advanced Intelligent Systems 4, no. 5 (2022): 2270021. http://dx.doi.org/10.1002/aisy.202270021.
Pełny tekst źródłaLinn, Eike, and Heidemarie Schmidt. "Advancing in-memory Arithmetic Based on CMOS-integrable Memristive Crossbar Structures." PROOF 1 (November 27, 2021): 80–89. http://dx.doi.org/10.37394/232020.2021.1.12.
Pełny tekst źródłaMatsuno, Tomohiro, Satoshi Sugahara, and Masaaki Tanaka. "Novel Reconfigurable Logic Gates Using Spin Metal–Oxide–Semiconductor Field-Effect Transistors." Japanese Journal of Applied Physics 43, no. 9A (2004): 6032–37. http://dx.doi.org/10.1143/jjap.43.6032.
Pełny tekst źródłaChiang, Yu-Fan, Wei-Yu Chien, Yue-Der Chih, Jonathan Chang, Chrong Jung Lin, and Ya-Chin King. "FinFET CMOS logic gates with non-volatile states for reconfigurable computing systems." Integration 65 (March 2019): 97–103. http://dx.doi.org/10.1016/j.vlsi.2018.11.007.
Pełny tekst źródłaHou, Jie, Liao Chen, Wenchan Dong, and Xinliang Zhang. "40 Gb/s reconfigurable optical logic gates based on FWM in silicon waveguide." Optics Express 24, no. 3 (2016): 2701. http://dx.doi.org/10.1364/oe.24.002701.
Pełny tekst źródłaWorschech, L., F. Hartmann, T. Y. Kim, et al. "Universal and reconfigurable logic gates in a compact three-terminal resonant tunneling diode." Applied Physics Letters 96, no. 4 (2010): 042112. http://dx.doi.org/10.1063/1.3302457.
Pełny tekst źródłaAbraham, Doron, Avraham Chelly, Joseph Shappir, and Zeev Zalevsky. "Hybrid optical and electrical reconfigurable logic gates based on silicon on insulator technology." Photonics and Nanostructures - Fundamentals and Applications 9, no. 1 (2011): 35–41. http://dx.doi.org/10.1016/j.photonics.2010.08.002.
Pełny tekst źródłaHan, Bingchen, and Yi Liu. "All-optical reconfigurable non-inverted logic gates with a single semiconductor optical amplifier." AIP Advances 9, no. 1 (2019): 015007. http://dx.doi.org/10.1063/1.5061828.
Pełny tekst źródłaBae, Gi Yoon, Yechan Hwang, Sangmin Lee, and Wanjun Park. "Reconfigurable Logic Gates with in‐Plane Magnetic Tunnel Junctions Representing Full Boolean Functions." physica status solidi (a) 216, no. 6 (2019): 1800959. http://dx.doi.org/10.1002/pssa.201800959.
Pełny tekst źródłaLee, Kyung Hoon, Kunhao Yu, Hasan Al Ba’ba’a, An Xin, Zhangzhengrong Feng, and Qiming Wang. "Sharkskin-Inspired Magnetoactive Reconfigurable Acoustic Metamaterials." Research 2020 (February 5, 2020): 1–13. http://dx.doi.org/10.34133/2020/4825185.
Pełny tekst źródłaM. El-Medany, Wael. "A cost-effective programmable SoC for network security using Xilinx Spartan 3AN FPGA." Journal of Engineering, Design and Technology 12, no. 2 (2014): 280–91. http://dx.doi.org/10.1108/jedt-01-2011-0008.
Pełny tekst źródłaTilbury, Dawn M. "Recon Figureable Logic Control for Manufacturing Systems." Mechanical Engineering 136, no. 12 (2014): S16—S23. http://dx.doi.org/10.1115/1.2014-dec-7.
Pełny tekst źródłaSeifi Laleh, Mohammad, and Mohammad Razaghi. "Simulation of reconfigurable double-input optical gates based on a microring flower-like structure, part II. Combinational logic gates." Applied Optics 61, no. 3 (2022): 783. http://dx.doi.org/10.1364/ao.440946.
Pełny tekst źródła