Gotowa bibliografia na temat „Reconfigurable Hardware Architecture”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Reconfigurable Hardware Architecture”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Reconfigurable Hardware Architecture"
Thomas, Alexander, Michael Rückauer i Jürgen Becker. "HoneyComb: An Application-Driven Online Adaptive Reconfigurable Hardware Architecture". International Journal of Reconfigurable Computing 2012 (2012): 1–17. http://dx.doi.org/10.1155/2012/832531.
Pełny tekst źródłaSiddiqui, Ali Shuja, Yutian Gui i Fareena Saqib. "Secure Boot for Reconfigurable Architectures". Cryptography 4, nr 4 (25.09.2020): 26. http://dx.doi.org/10.3390/cryptography4040026.
Pełny tekst źródłaFabiani, Erwan. "Experiencing a Problem-Based Learning Approach for Teaching Reconfigurable Architecture Design". International Journal of Reconfigurable Computing 2009 (2009): 1–11. http://dx.doi.org/10.1155/2009/923415.
Pełny tekst źródłaPionteck, Thilo, Roman Koch, Carsten Albrecht i Erik Maehle. "A Design Technique for Adapting Number and Boundaries of Reconfigurable Modules at Runtime". International Journal of Reconfigurable Computing 2009 (2009): 1–10. http://dx.doi.org/10.1155/2009/942930.
Pełny tekst źródłaGöhringer, Diana, Thomas Perschke, Michael Hübner i Jürgen Becker. "A Taxonomy of Reconfigurable Single-/Multiprocessor Systems-on-Chip". International Journal of Reconfigurable Computing 2009 (2009): 1–11. http://dx.doi.org/10.1155/2009/395018.
Pełny tekst źródłaWijtvliet, Mark, Henk Corporaal i Akash Kumar. "CGRA-EAM—Rapid Energy and Area Estimation for Coarse-grained Reconfigurable Architectures". ACM Transactions on Reconfigurable Technology and Systems 14, nr 4 (31.12.2021): 1–28. http://dx.doi.org/10.1145/3468874.
Pełny tekst źródłaVoss, Nils, Bastiaan Kwaadgras, Oskar Mencer, Wayne Luk i Georgi Gaydadjiev. "On Predictable Reconfigurable System Design". ACM Transactions on Architecture and Code Optimization 18, nr 2 (marzec 2021): 1–28. http://dx.doi.org/10.1145/3436995.
Pełny tekst źródłaCraven, Stephen, i Peter Athanas. "Dynamic Hardware Development". International Journal of Reconfigurable Computing 2008 (2008): 1–10. http://dx.doi.org/10.1155/2008/901328.
Pełny tekst źródłaNAKANO, KOJI. "A BIBLIOGRAPHY OF PUBLISHED PAPERS ON DYNAMICALLY RECONFIGURABLE ARCHITECTURES". Parallel Processing Letters 05, nr 01 (marzec 1995): 111–24. http://dx.doi.org/10.1142/s0129626495000102.
Pełny tekst źródłaPurohit, Gaurav, Kota Solomon Raju i Vinod Kumar Chaubey. "XOR-FREE Implementation of Convolutional Encoder for Reconfigurable Hardware". International Journal of Reconfigurable Computing 2016 (2016): 1–8. http://dx.doi.org/10.1155/2016/9128683.
Pełny tekst źródłaRozprawy doktorskie na temat "Reconfigurable Hardware Architecture"
Gelb, Benjamin S. "A timeshared, runtime reconfigurable hardware co-processing architecture". Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/53147.
Pełny tekst źródłaIncludes bibliographical references (leaves 73-74).
The constant desire for increased performance in microprocessor systems has led to the need for specialized hardware cores to accelerate specific computational tasks. In this thesis, we explore the potential of using FPGA partial reconfiguration to create a platform for customized hardware cores that may be loaded on demand, at runtime, and replaced when not in use. We implement two new software tools, bitparse and bitrender, to demonstrate the bitstream relocation technique. Further, we present a functional microprocessor system coupled with a runtime reprogramable peripheral synthesized on a Xilinx Virtex-5 FPGA and discuss its performance implications.
by Benjamin S. Gelb.
M.Eng.
Peterkin, Raymond. "A reconfigurable hardware architecture for VPN MPLS based services". Thesis, University of Ottawa (Canada), 2006. http://hdl.handle.net/10393/27283.
Pełny tekst źródłaDiniz, Claudio Machado. "Dedicated and reconfigurable hardware accelerators for high efficiency video coding standard". reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2015. http://hdl.handle.net/10183/118394.
Pełny tekst źródłaThe demand for ultra-high resolution video (beyond 1920x1080 pixels) led to the need of developing new and more efficient video coding standards to provide high compression efficiency. The High Efficiency Video Coding (HEVC) standard, published in 2013, reaches double compression efficiency (or 50% reduction in size of coded video) compared to the most efficient video coding standard at that time, and most used in the market, the H.264/AVC (Advanced Video Coding) standard. HEVC reaches this result at the cost of high computational effort of the tools included in the encoder and decoder. The increased computational effort of HEVC standard and the power limitations of current silicon fabrication technologies makes it essential to develop hardware accelerators for compute-intensive computational kernels of HEVC application. Hardware accelerators provide higher performance and energy efficiency than general purpose processors for specific applications. An HEVC application analysis conducted in this work identified the most compute-intensive kernels of HEVC, namely the Fractional-pixel Interpolation Filter, the Deblocking Filter and the Sum of Absolute Differences calculation. A run-time analysis on Interpolation Filter indicates a great potential of power/energy saving by adapting the hardware accelerator to the varying workload. This thesis introduces new contributions in the field of dedicated and reconfigurable hardware accelerators for HEVC standard. Dedicated hardware accelerators for the Fractional Pixel Interpolation Filter, the Deblocking Filter and the Sum of Absolute Differences calculation are herein proposed, designed and evaluated. The interpolation filter hardware architecture achieves throughput similar to the state of the art, while reducing hardware area by 50%. Our deblocking filter hardware architecture also achieves similar throughput compared to state of the art with a 5X to 6X reduction in gate count and 3X reduction in power dissipation. The thesis also does a new comparative analysis of Sum of Absolute Differences processing elements, in which various architecture design alternatives with different area, performance and power results were introduced. A novel reconfigurable interpolation filter hardware architecture for HEVC standard was developed, and it provides 57% design-time area reduction and run-time power/energy adaptation in a picture-by-picture basis, compared to the state-of-the-art. Additionally a run-time accelerator binding scheme is proposed for tile-based mixed-grained reconfigurable architectures, which reduces the communication overhead, compared to first-fit strategy with datapath reusing scheme, by up to 44% (23% on average) for different number of tiles and internal tile organizations. This run-time accelerator binding scheme is aware of the underlying architecture to bind datapaths in an efficient way, to avoid and minimize inter-tile communications. The new dedicated and reconfigurable hardware accelerators and techniques proposed in this thesis enable next-generation video coding standard implementations beyond HEVC with improved area, performance, and power efficiency.
Kung, Ling-Pei 1961. "Obtaining performance and programmability using reconfigurable hardware for media processing". Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/61855.
Pełny tekst źródłaIncludes bibliographical references (p. 127-132).
An imperative requirement in the design of a reconfigurable computing system or in the development of a new application on such a system is performance gains. However, such developments suffer from long-and-difficult programming process, hard-to-predict performance gains, and limited scope of applications. To address these problems, we need to understand reconfigurable hardware's capabilities and limitations, its performance advantages and disadvantages, re-think reconfigurable system architectures, and develop new tools to explore its utility. We begin by examining performance contributors at the system level. We identify those from general-purpose and those from dedicated components. We propose an architecture by integrating reconfigurable hardware within the general-purpose framework. This is to avoid and minimize dedicated hardware and organization for programmability. We analyze reconfigurable logic architectures and their performance limitations. This analysis leads to a theory that reconfigurable logic can never be clocked faster than a fixed-logic design based on the same fabrication technology. Though highly unpredictable, we can obtain a quick upper bound estimate on the clock speed based on a few parameters. We also analyze microprocessor architectures and establish an analytical performance model. We use this model to estimate performance bounds using very little information on task properties. These bounds help us to detect potential memory-bound tasks. For a compute-bound task, we compare its performance upper bound with the upper bound on reconfigurable clock speed to further rule out unlikely speedup candidates.
(cont.) These performance estimates require very few parameters, and can be quickly obtained without writing software or hardware codes. They can be integrated with design tools as front end tools to explore speedup opportunities without costly trials. We believe this will broaden the applicability of reconfigurable computing.
by Ling-Pei Kung.
Ph.D.
Balasubramanian, Karthikeyan. "Reconfigurable System-on-Chip Architecture for Neural Signal Processing". Diss., Temple University Libraries, 2011. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/144255.
Pełny tekst źródłaPh.D.
Analyzing the brain's behavior in terms of its neuronal activity is the fundamental purpose of Brain-Machine Interfaces (BMIs). Neuronal activity is often assumed to be encoded in the rate of neuronal action potential spikes. Successful performance of a BMI system is tied to the efficiency of its individual processing elements such as spike detection, sorting and decoding. To achieve reliable operation, BMIs are equipped with hundreds of electrodes at the neural interface. While a single electrode/tetrode communicates with up to four neurons at a given instant of time, a typical interface communicates with an ensemble of hundreds or even thousands of neurons. However, translation of these signals (data) into usable information for real-time BMIs is bottlenecked due to the lack of efficient real-time algorithms and real-time hardware that can handle massively parallel channels of neural data. The research presented here addresses this issue by developing real-time neural processing algorithms that can be implemented in reconfigurable hardware and thus, can be scaled to handle thousands of channels in parallel. The developed reconfigurable system serves as an evaluation platform for investigating the fundamental design tradeoffs in allocating finite hardware resources for a reliable BMI. In this work, the generic architectural layout needed to process neural signals in a massive scale is discussed. A System-on-Chip design with embedded system architecture is presented for FPGA hardware realization that features (a) scalability (b) reconfigurability, and (c) real-time operability. A prototype design incorporating a dual processor system and essential neural signal processing routines such as real-time spike detection and sorting is presented. Two kinds of spike detectors, a simple threshold-based and non-linear energy operator-based, were implemented. To achieve real-time spike sorting, a fuzzy logic-based spike sorter was developed and synthesized in the hardware. Furthermore, a real-time kernel to monitor the high-level interactions of the system was implemented. The entire system was realized in a platform FPGA (Xilinx Virtex-5 LX110T). The system was tested using extracellular neural recordings from three different animals, a owl monkey, a macaque and a rat. Operational performance of the system is demonstrated for a 300 channel neural interface. Scaling the system to 900 channels is trivial.
Temple University--Theses
Lomonaco, Michael John. "CRYPTARRAY A SCALABLE AND RECONFIGURABLE ARCHITECTURE FOR CRYPTOGRAPHIC APPLICATIONS". Master's thesis, University of Central Florida, 2004. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4394.
Pełny tekst źródłaM.S.
Department of Electrical and Computer Engineering
Engineering and Computer Science
Electrical and Computer Engineering
Avakian, Annie. "Reducing Cache Access Time in Multicore Architectures Using Hardware and Software Techniques". University of Cincinnati / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1335461322.
Pełny tekst źródłaSilva, Antonio Carlos Fernandes da. "ChipCflow: tool for convert C code in a static dataflow architecture in reconfigurable hardware". Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-30062015-141638/.
Pełny tekst źródłaExiste uma crescente busca por softwares e arquiteturas alternativas. Essa busca acontece pois houveram avanços na tecnologia do hardware, e estes avanços devem ser complementados por inovações nas metodologias de projetos, testes e verificação para que haja um uso eficaz da tecnologia. Os software e arquiteturas alternativas, geralmente são modelos que exploram o paralelismo das aplicações, ao contrário do modelo de Von Neumann. Dentre as arquiteturas alternativas de alto desempenho, tem-se a arquitetura a fluxo de dados. Nesse tipo de arquitetura, o processo de execução de programas é determinado pela disponibilidade dos dados, logo o paralelismo está embutido na própria natureza do sistema. O modelo a fluxo de dados possui a vantagem de expressar o paralelismo de maneira intrínseca, eliminando a necessidade do programador explicitar em seu código os trechos onde deve haver paralelismo. As arquiteturas a fluxo de dados voltaram a ser uma área de pesquisa devido aos avanços do hardware, em particular, os avanços da Computação Reconfigurável e dos Field Programmable Gate Arrays (FPGAs).Nesta tese é descrita uma ferramenta de conversão de código que visa a geração de aplicações utilizando uma arquitetura a fluxo de dados estática. Também é descrito o projeto ChipCflow, cuja ferramenta de conversão de código, descrita nesta tese, é parte integrante. A especificação do algoritmo a ser convertido é feita em linguagem C e convertida para uma linguagem de descrição de hardware, respeitando o modelo proposto pelo ChipCflow. Os resultados alcançados visam a prova de conceito da conversão de código de uma linguagem de alto nível para uma arquitetura a fluxo de dados a ser configurada em FPGA.
Robinson, Kylan Thomas. "An integrated development environment for the design and simulation of medium-grain reconfigurable hardware". Pullman, Wash. : Washington State University, 2010. http://www.dissertations.wsu.edu/Thesis/Spring2010/k_robinson_041510.pdf.
Pełny tekst źródłaTitle from PDF title page (viewed on June 22, 2010). "School of Electrical Engineering and Computer Science." Includes bibliographical references (p. 75-76).
Das, Satyajit. "Architecture and Programming Model Support for Reconfigurable Accelerators in Multi-Core Embedded Systems". Thesis, Lorient, 2018. http://www.theses.fr/2018LORIS490/document.
Pełny tekst źródłaEmerging trends in embedded systems and applications need high throughput and low power consumption. Due to the increasing demand for low power computing and diminishing returns from technology scaling, industry and academia are turning with renewed interest toward energy efficient hardware accelerators. The main drawback of hardware accelerators is that they are not programmable. Therefore, their utilization can be low is they perform one specific function and increasing the number of the accelerators in a system on chip (SoC) causes scalability issues. Programmable accelerators provide flexibility and solve the scalability issues. Coarse-Grained Reconfigurable Array (CGRA) architecture consisting of several processing elements with word level granularity is a promising choice for programmable accelerator. Inspired by the promising characteristics of programmable accelerators, potentials of CGRAs in near threshold computing platforms are studied and an end-to-end CGRA research framework is developed in this thesis. The major contributions of this framework are: CGRA design, implementation, integration in a computing system, and compilation for CGRA. First, the design and implementation of a CGRA named Integrated Programmable Array (IPA) is presented. Next, the problem of mapping applications with control and data flow onto CGRA is formulated. From this formulation, several efficient algorithms are developed using internal resources of a CGRA, with a vision for low power acceleration. The algorithms are integrated into an automated compilation flow. Finally, the IPA accelerator is augmented in PULP - a Parallel Ultra-Low-Power Processing-Platform to explore heterogeneous computing
Książki na temat "Reconfigurable Hardware Architecture"
N, Mahapatra Rabi, red. Design of low-power coarse-grained reconfigurable architectures. Boca Raton, FL: CRC Press, 2011.
Znajdź pełny tekst źródłaNedjah, Nadia, i Chao Wang. Reconfigurable and Adaptive Computing: Theory and Applications. Taylor & Francis Group, 2018.
Znajdź pełny tekst źródłaNedjah, Nadia, i Chao Wang. Reconfigurable and Adaptive Computing: Theory and Applications. Taylor & Francis Group, 2018.
Znajdź pełny tekst źródłaReconfigurable and Adaptive Computing: Theory and Applications. Taylor & Francis Group, 2018.
Znajdź pełny tekst źródłaReconfigurable and Adaptive Computing: Theory and Applications. Taylor & Francis Group, 2018.
Znajdź pełny tekst źródłaNedjah, Nadia, i Chao Wang. Reconfigurable and Adaptive Computing: Theory and Applications. Taylor & Francis Group, 2018.
Znajdź pełny tekst źródłaMahapatra, Rabi N., i Yoonjin Kim. Design of Low-Power Coarse-Grained Reconfigurable Architectures. Taylor & Francis Group, 2010.
Znajdź pełny tekst źródłaMahapatra, Rabi N., i Yoonjin Kim. Design of Low-Power Coarse-Grained Reconfigurable Architectures. Taylor & Francis Group, 2017.
Znajdź pełny tekst źródłaMahapatra, Rabi N., i Yoonjin Kim. Design of Low-Power Coarse-Grained Reconfigurable Architectures. Taylor & Francis Group, 2010.
Znajdź pełny tekst źródłaMahapatra, Rabi N., i Yoonjin Kim. Design of Low-Power Coarse-Grained Reconfigurable Architectures. Taylor & Francis Group, 2010.
Znajdź pełny tekst źródłaCzęści książek na temat "Reconfigurable Hardware Architecture"
Liu, Leibo, Bo Wang i Shaojun Wei. "Hardware Architecture of Reconfigurable Cryptographic Processors". W Reconfigurable Cryptographic Processor, 133–67. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8899-5_3.
Pełny tekst źródłaThomas, Alexander, i Jürgen Becker. "Development and Synthesis of Adaptive Multi-grained Reconfigurable Hardware Architecture for Dynamic Function Patterns". W Dynamically Reconfigurable Systems, 3–24. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-3485-4_1.
Pełny tekst źródłaGoodman, James, i Anantha Chandrakasan. "An Energy Efficient Reconfigurable Public-Key Cryptography Processor Architecture". W Cryptographic Hardware and Embedded Systems — CHES 2000, 175–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/3-540-44499-8_13.
Pełny tekst źródłaChen, Mengdong, Xiujiang Ren i Xianghui Xie. "An Efficient Rule Processing Architecture Based on Reconfigurable Hardware". W Communications in Computer and Information Science, 22–33. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-1850-8_3.
Pełny tekst źródłaBaidya, Paresh, Rourab Paul i Suman Sau. "High-Speed Loop Unrolled Grain Architecture in Reconfigurable Hardware". W Advances in Intelligent Systems and Computing, 165–73. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1483-8_15.
Pełny tekst źródłaNakada, Hiroshi, Kiyoshi Oguri, Norbert Imlig, Minoru Inamori, Ryusuke Koniski, Hideyuki Ito, Kouichi Nagami i Tsunemichi Shiozawa. "Plastic cell architecture: A dynamically reconfigurable hardware-based computer". W Lecture Notes in Computer Science, 679–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/bfb0097953.
Pełny tekst źródłaNedjah, Nadia, i Luiza de Macedo Mourelle. "Reconfigurable Hardware Architecture for Compact and Efficient Stochastic Neuron". W Artificial Neural Nets Problem Solving Methods, 17–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-44869-1_3.
Pełny tekst źródłaKnieper, Tobias, Paul Kaufmann, Kyrre Glette, Marco Platzner i Jim Torresen. "Coping with Resource Fluctuations: The Run-time Reconfigurable Functional Unit Row Classifier Architecture". W Evolvable Systems: From Biology to Hardware, 250–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15323-5_22.
Pełny tekst źródłaAhn, Seong-Yong, Jun-Yong Kim i Jeong-A. Lee. "Heuristic Algorithm for Reducing Mapping Sets of Hardware-Software Partitioning in Reconfigurable System". W Advances in Computer Systems Architecture, 102–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30102-8_9.
Pełny tekst źródłaWeng, Sheng-Kai, Chien-Min Ou i Wen-Jyi Hwang. "VLSI Architecture for Fast Memetic Vector Quantizer Design on Reconfigurable Hardware". W Algorithms and Architectures for Parallel Processing, 513–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03095-6_49.
Pełny tekst źródłaStreszczenia konferencji na temat "Reconfigurable Hardware Architecture"
Ahmad, B., A. T. Erdogan i S. Khawam. "Architecture of a Dynamically Reconfigurable NoC for Adaptive Reconfigurable MPSoC". W First NASA/ESA Conference on Adaptive Hardware and Systems (AHS'06). IEEE, 2006. http://dx.doi.org/10.1109/ahs.2006.25.
Pełny tekst źródłaRodriguez, Vladimir, Jose F. Martinez, Jesus A. Carrasco, Manuel S. Lazo, Rene Cumplido i Claudia Feregrino Uribe. "A hardware architecture for filtering irreducible testors". W 2014 International Conference on Reconfigurable Computing and FPGAs (ReConFig14). IEEE, 2014. http://dx.doi.org/10.1109/reconfig.2014.7032526.
Pełny tekst źródłaWang, Ying, Jian Yan, Xuegong Zhou, Lingli Wang, Wayne Luk, Chenglian Peng i Jiarong Tong. "A partially reconfigurable architecture supporting hardware threads". W 2012 International Conference on Field-Programmable Technology (FPT 2012). IEEE, 2012. http://dx.doi.org/10.1109/fpt.2012.6412147.
Pełny tekst źródłaJung, Yong-kyu. "A Hardware/Software Co-reconfigurable Multimedia Architecture". W 2006 IEEE/ACM/IFIP Workshop on Embedded Systems for Real Time Multimedia. IEEE, 2006. http://dx.doi.org/10.1109/estmed.2006.321277.
Pełny tekst źródłaLi, Zhijing, Yuwei Ye, Stephen Neuendorffer i Adrian Sampson. "Compiler-Driven Simulation of Reconfigurable Hardware Accelerators". W 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2022. http://dx.doi.org/10.1109/hpca53966.2022.00052.
Pełny tekst źródłaTasdizen, O., H. Kukner, A. Akin i I. Hamzaoglu. "A high performance reconfigurable Motion Estimation hardware architecture". W 2009 Design, Automation & Test in Europe Conference & Exhibition (DATE'09). IEEE, 2009. http://dx.doi.org/10.1109/date.2009.5090787.
Pełny tekst źródłaDias, Mauricio A., i Fernando S. Osorio. "Reconfigurable Hardware Architecture for Vision-Based Driving Systems". W 2015 12th Latin American Robotics Symposium (LARS) and 2015 3rd Brazilian Symposium on Robotics (LARS-SBR). IEEE, 2015. http://dx.doi.org/10.1109/lars-sbr.2015.65.
Pełny tekst źródłaPedraza, Cesar, Emilio Castillo, Javier Castillo, Cristobal Camarero, Jose L. Bosque, Jose I. Martinez i Rafael Menendez. "Cluster architecture based on low cost reconfigurable hardware". W 2008 International Conference on Field Programmable Logic and Applications (FPL). IEEE, 2008. http://dx.doi.org/10.1109/fpl.2008.4630017.
Pełny tekst źródłaKhalil, Kasem, Omar Eldash, Bappaditya Dey, Ashok Kumar i Magdy Bayoumi. "A Novel Reconfigurable Hardware Architecture of Neural Network". W 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS). IEEE, 2019. http://dx.doi.org/10.1109/mwscas.2019.8884809.
Pełny tekst źródłaTu, Fengbin, Shouyi Yin, Peng Ouyang, Leibo Liu i Shaojun Wei. "RNA: A Reconfigurable Architecture for Hardware Neural Acceleration". W Design, Automation and Test in Europe. New Jersey: IEEE Conference Publications, 2015. http://dx.doi.org/10.7873/date.2015.0414.
Pełny tekst źródła