Artykuły w czasopismach na temat „Rechargeable-Iron Batteries”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Rechargeable-Iron Batteries”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Ritchie, A. G., P. G. Bowles i D. P. Scattergood. "Lithium-ion/iron sulphide rechargeable batteries". Journal of Power Sources 136, nr 2 (październik 2004): 276–80. http://dx.doi.org/10.1016/j.jpowsour.2004.03.043.
Pełny tekst źródłaYou, Gongchuan, i Liang He. "High Performance Electrolyte for Iron-Ion batteries". Academic Journal of Science and Technology 5, nr 2 (2.04.2023): 244–47. http://dx.doi.org/10.54097/ajst.v5i2.6995.
Pełny tekst źródłaHe, Z., F. Xiong, S. Tan, X. Yao, C. Zhang i Q. An. "Iron metal anode for aqueous rechargeable batteries". Materials Today Advances 11 (wrzesień 2021): 100156. http://dx.doi.org/10.1016/j.mtadv.2021.100156.
Pełny tekst źródłaKumar, Harish, i A. K. Shukla. "Fabrication Fe/Fe3O4/Graphene Nanocomposite Electrode Material for Rechargeable Ni/Fe Batteries in Hybrid Electric Vehicles". International Letters of Chemistry, Physics and Astronomy 19 (październik 2013): 15–25. http://dx.doi.org/10.18052/www.scipress.com/ilcpa.19.15.
Pełny tekst źródłaKumar, Harish, i A. K. Shukla. "Fabrication Fe/Fe<sub>3</sub>O<sub>4</sub>/Graphene Nanocomposite Electrode Material for Rechargeable Ni/Fe Batteries in Hybrid Electric Vehicles". International Letters of Chemistry, Physics and Astronomy 19 (2.10.2013): 15–25. http://dx.doi.org/10.56431/p-oqaeru.
Pełny tekst źródłaHayashi, Kazushi, Yasutaka Maeda, Tsubasa Suzuki, Hisatoshi Sakamoto, Toshihiro Kugimiya, Wai Kian Tan, Go Kawamura, Hiroyuki Muto i Atsunori Matsuda. "Development of Iron-Based Rechargeable Batteries with Sintered Porous Iron Electrodes". ECS Transactions 75, nr 18 (10.01.2017): 111–16. http://dx.doi.org/10.1149/07518.0111ecst.
Pełny tekst źródłaPaulraj, Alagar Raj, Yohannes Kiros, Björn Skårman i Hilmar Vidarsson. "Core/Shell Structure Nano-Iron/Iron Carbide Electrodes for Rechargeable Alkaline Iron Batteries". Journal of The Electrochemical Society 164, nr 7 (2017): A1665—A1672. http://dx.doi.org/10.1149/2.1431707jes.
Pełny tekst źródłaMayer, Sergio Federico, Cristina de la Calle, María Teresa Fernández-Díaz, José Manuel Amarilla i José Antonio Alonso. "Nitridation effect on lithium iron phosphate cathode for rechargeable batteries". RSC Advances 12, nr 6 (2022): 3696–707. http://dx.doi.org/10.1039/d1ra07574h.
Pełny tekst źródłaAbdalla, Abdallah H., Charles I. Oseghale, Jorge O. Gil Posada i Peter J. Hall. "Rechargeable nickel–iron batteries for large‐scale energy storage". IET Renewable Power Generation 10, nr 10 (listopad 2016): 1529–34. http://dx.doi.org/10.1049/iet-rpg.2016.0051.
Pełny tekst źródłaMorzilli, S., i B. Scrosati. "Iron oxide electrodes in lithium organic electrolyte rechargeable batteries". Electrochimica Acta 30, nr 10 (październik 1985): 1271–76. http://dx.doi.org/10.1016/0013-4686(85)85002-7.
Pełny tekst źródłaTsuneishi, Taku, Takuma Esaki, Hisatoshi Sakamoto, Kazushi Hayashi, G. Kawamura, Hiroyuki Muto i Atsunori Matsuda. "Iron Composite Anodes for Fabricating All-Solid-State Iron-Air Rechargeable Batteries". Key Engineering Materials 616 (czerwiec 2014): 114–19. http://dx.doi.org/10.4028/www.scientific.net/kem.616.114.
Pełny tekst źródłaParola, Valeria La, Vincenzo Turco Liveri, Lorena Todaro, Domenico Lombardo, Elvira Maria Bauer, Alessandro Dell'Era, Alessandro Longo i in. "Iron and lithium-iron alkyl phosphates as nanostructured material for rechargeable batteries". Materials Letters 220 (czerwiec 2018): 58–61. http://dx.doi.org/10.1016/j.matlet.2018.02.112.
Pełny tekst źródłaWeinrich, Henning, Yasin Emre Durmus, Hermann Tempel, Hans Kungl i Rüdiger-A. Eichel. "Silicon and Iron as Resource-Efficient Anode Materials for Ambient-Temperature Metal-Air Batteries: A Review". Materials 12, nr 13 (2.07.2019): 2134. http://dx.doi.org/10.3390/ma12132134.
Pełny tekst źródłaWeinrich, Henning, Jérémy Come, Hermann Tempel, Hans Kungl, Rüdiger-A. Eichel i Nina Balke. "Understanding the nanoscale redox-behavior of iron-anodes for rechargeable iron-air batteries". Nano Energy 41 (listopad 2017): 706–16. http://dx.doi.org/10.1016/j.nanoen.2017.10.023.
Pełny tekst źródłaShakoor, Rana A., Chan Sun Park, Arsalan A. Raja, Jaeho Shin i Ramazan Kahraman. "A mixed iron–manganese based pyrophosphate cathode, Na2Fe0.5Mn0.5P2O7, for rechargeable sodium ion batteries". Physical Chemistry Chemical Physics 18, nr 5 (2016): 3929–35. http://dx.doi.org/10.1039/c5cp06836c.
Pełny tekst źródłaEllis, B. L., W. R. M. Makahnouk, Y. Makimura, K. Toghill i L. F. Nazar. "A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries". Nature Materials 6, nr 10 (9.09.2007): 749–53. http://dx.doi.org/10.1038/nmat2007.
Pełny tekst źródłaBerger, Cornelius M., Abdelfattah Mahmoud, Raphaël P. Hermann, Waldemar Braun, Elena Yazhenskikh, Yoo Jung Sohn, Norbert H. Menzler, Olivier Guillon i Martin Bram. "Calcium-Iron Oxide as Energy Storage Medium in Rechargeable Oxide Batteries". Journal of the American Ceramic Society 99, nr 12 (8.08.2016): 4083–92. http://dx.doi.org/10.1111/jace.14439.
Pełny tekst źródłaPIETRZAK, TOMASZ K., IRENA GORZKOWSKA, JAN L. NOWIŃSKI, JERZY E. GARBARCZYK i MAREK WASIUCIONEK. "PREPARATION OF TRIPHYLITE-LIKE GLASSES AND NANOMATERIALS IN THE LiFePO4-V2O5 SYSTEM AND STUDY ON THEIR ELECTRICAL CONDUCTIVITY". Functional Materials Letters 04, nr 02 (czerwiec 2011): 143–45. http://dx.doi.org/10.1142/s1793604711001750.
Pełny tekst źródłaKhezri, Ramin, Kridsada Jirasattayaporn, Ali Abbasi, Thandavarayan Maiyalagan, Ahmad Azmin Mohamad i Soorathep Kheawhom. "Three-Dimensional Fibrous Iron as Anode Current Collector for Rechargeable Zinc–Air Batteries". Energies 13, nr 6 (19.03.2020): 1429. http://dx.doi.org/10.3390/en13061429.
Pełny tekst źródłaManohar, Aswin K., Chenguang Yang, Souradip Malkhandi, Bo Yang, G. K. Surya Prakash i S. R. Narayanan. "Understanding the Factors Affecting the Formation of Carbonyl Iron Electrodes in Rechargeable Alkaline Iron Batteries". Journal of The Electrochemical Society 159, nr 12 (2012): A2148—A2155. http://dx.doi.org/10.1149/2.021301jes.
Pełny tekst źródłaSun, Ling Na. "Research of LiFePO4 as Positive Electrode Materials". Applied Mechanics and Materials 217-219 (listopad 2012): 792–95. http://dx.doi.org/10.4028/www.scientific.net/amm.217-219.792.
Pełny tekst źródłaYu, S. H., M. Shokouhimehr, T. Hyeon i Y. E. Sung. "Iron Hexacyanoferrate Nanoparticles as Cathode Materials for Lithium and Sodium Rechargeable Batteries". ECS Electrochemistry Letters 2, nr 4 (6.02.2013): A39—A41. http://dx.doi.org/10.1149/2.008304eel.
Pełny tekst źródłaPeng, Zhuo, Qiulong Wei, Shuangshuang Tan, Pan He, Wen Luo, Qinyou An i Liqiang Mai. "Novel layered iron vanadate cathode for high-capacity aqueous rechargeable zinc batteries". Chemical Communications 54, nr 32 (2018): 4041–44. http://dx.doi.org/10.1039/c8cc00987b.
Pełny tekst źródłaLu, Jiechen, Shin-ichi Nishimura i Atsuo Yamada. "A Fe-rich sodium iron orthophosphate as cathode material for rechargeable batteries". Electrochemistry Communications 79 (czerwiec 2017): 51–54. http://dx.doi.org/10.1016/j.elecom.2017.04.012.
Pełny tekst źródłaYang, Fan, Jinhao Xie, Xiaoqing Liu, Yinxiang Zeng, Minghua Chen i Xihong Lu. "Iron-based nanoparticles encapsulated in super-large 3D carbon nanotube networks as a bifunctional catalyst for ultrastable rechargeable zinc–air batteries". Journal of Materials Chemistry A 8, nr 48 (2020): 25913–18. http://dx.doi.org/10.1039/d0ta09115d.
Pełny tekst źródłaHe, Ting, Bingzhang Lu, Yang Chen, Yong Wang, Yaqiang Zhang, John L. Davenport, Alan P. Chen i in. "Nanowrinkled Carbon Aerogels Embedded with FeNx Sites as Effective Oxygen Electrodes for Rechargeable Zinc-Air Battery". Research 2019 (20.12.2019): 1–13. http://dx.doi.org/10.34133/2019/6813585.
Pełny tekst źródłaLei, Danni, Dong-Chan Lee, Alexandre Magasinski, Enbo Zhao, Daniel Steingart i Gleb Yushin. "Performance Enhancement and Side Reactions in Rechargeable Nickel–Iron Batteries with Nanostructured Electrodes". ACS Applied Materials & Interfaces 8, nr 3 (14.01.2016): 2088–96. http://dx.doi.org/10.1021/acsami.5b10547.
Pełny tekst źródłaMyung, Seung-Taek, Shuhei Sakurada, Hitoshi Yashiro i Yang-Kook Sun. "Iron trifluoride synthesized via evaporation method and its application to rechargeable lithium batteries". Journal of Power Sources 223 (luty 2013): 1–8. http://dx.doi.org/10.1016/j.jpowsour.2012.09.027.
Pełny tekst źródłaKim, Hyungsub, Gabin Yoon, Inchul Park, Jihyun Hong, Kyu-Young Park, Jongsoon Kim, Kug-Seung Lee, Nark-Eon Sung, Seongsu Lee i Kisuk Kang. "Highly Stable Iron- and Manganese-Based Cathodes for Long-Lasting Sodium Rechargeable Batteries". Chemistry of Materials 28, nr 20 (14.10.2016): 7241–49. http://dx.doi.org/10.1021/acs.chemmater.6b01766.
Pełny tekst źródłaAit Salah, A., P. Jozwiak, K. Zaghib, J. Garbarczyk, F. Gendron, A. Mauger i C. M. Julien. "FTIR features of lithium-iron phosphates as electrode materials for rechargeable lithium batteries". Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 65, nr 5 (grudzień 2006): 1007–13. http://dx.doi.org/10.1016/j.saa.2006.01.019.
Pełny tekst źródłaRamzan, M., S. Lebègue i R. Ahuja. "Ab initio study of lithium and sodium iron fluorophosphate cathodes for rechargeable batteries". Applied Physics Letters 94, nr 15 (13.04.2009): 151904. http://dx.doi.org/10.1063/1.3119704.
Pełny tekst źródłaLi, Chilin, Lin Gu, Jianwei Tong, Susumu Tsukimoto i Joachim Maier. "A Mesoporous Iron-Based Fluoride Cathode of Tunnel Structure for Rechargeable Lithium Batteries". Advanced Functional Materials 21, nr 8 (4.03.2011): 1391–97. http://dx.doi.org/10.1002/adfm.201002213.
Pełny tekst źródłaWu, Kunze, Lei Zhang, Yifei Yuan, Linxin Zhong, Zhongxin Chen, Xiao Chi, Hao Lu i in. "An Iron‐Decorated Carbon Aerogel for Rechargeable Flow and Flexible Zn–Air Batteries". Advanced Materials 32, nr 32 (lipiec 2020): 2002292. http://dx.doi.org/10.1002/adma.202002292.
Pełny tekst źródłaZHAO, Ming, Li-Fang JIAO, Hua-Tang YUAN, Jun-Li SUN i Yan FENG. "High-rate Lithium Iron(II) Phosphate as Cathode Material for Rechargeable Lithium Batteries". Chinese Journal of Chemistry 26, nr 2 (luty 2008): 290–94. http://dx.doi.org/10.1002/cjoc.200890057.
Pełny tekst źródłaSaiful Islam, M., i Peter R. Slater. "Solid-State Materials for Clean Energy: Insights from Atomic-Scale Modeling". MRS Bulletin 34, nr 12 (grudzień 2009): 935–41. http://dx.doi.org/10.1557/mrs2009.216.
Pełny tekst źródłaShangguan, Enbo, Fei Li, Jing Li, Zhaorong Chang, Quanmin Li, Xiao-Zi Yuan i Haijiang Wang. "FeS/C composite as high-performance anode material for alkaline nickel–iron rechargeable batteries". Journal of Power Sources 291 (wrzesień 2015): 29–39. http://dx.doi.org/10.1016/j.jpowsour.2015.05.019.
Pełny tekst źródłaYu, Tingting, Qiang Li, Xiangyu Zhao, Hui Xia, Liqun Ma, Jinlan Wang, Ying Shirley Meng i Xiaodong Shen. "Nanoconfined Iron Oxychloride Material as a High-Performance Cathode for Rechargeable Chloride Ion Batteries". ACS Energy Letters 2, nr 10 (14.09.2017): 2341–48. http://dx.doi.org/10.1021/acsenergylett.7b00699.
Pełny tekst źródłaLei, Danni, Dong-Chan Lee, Enbo Zhao, Alexandre Magasinski, Hong-Ryun Jung, Gene Berdichevsky, Daniel Steingart i Gleb Yushin. "Iron oxide nanoconfined in carbon nanopores as high capacity anode for rechargeable alkaline batteries". Nano Energy 48 (czerwiec 2018): 170–79. http://dx.doi.org/10.1016/j.nanoen.2018.03.035.
Pełny tekst źródłaMeng, Fanlu, Haixia Zhong, Junmin Yan i Xinbo Zhang. "Iron-chelated hydrogel-derived bifunctional oxygen electrocatalyst for high-performance rechargeable Zn–air batteries". Nano Research 10, nr 12 (14.01.2017): 4436–47. http://dx.doi.org/10.1007/s12274-016-1343-z.
Pełny tekst źródłaJadhav, Harsharaj S., Ramchandra S. Kalubarme, Arvind H. Jadhav i Jeong Gil Seo. "Iron-nickel spinel oxide as an electrocatalyst for non-aqueous rechargeable lithium-oxygen batteries". Journal of Alloys and Compounds 666 (maj 2016): 476–81. http://dx.doi.org/10.1016/j.jallcom.2016.01.131.
Pełny tekst źródłaMAINGOT, S., R. BADDOUR, J. P. PEREIRA-RAMOS, N. BAFFIER i P. WILLMANN. "ChemInform Abstract: A New Iron V2O5 Bronze as Electrode Material for Rechargeable Lithium Batteries." ChemInform 25, nr 6 (19.08.2010): no. http://dx.doi.org/10.1002/chin.199406015.
Pełny tekst źródłaIchu. B. C i ONOCHOJA U. F.C. "Lithium ion battery research and development: the Nigerian potential". Pacific International Journal 3, nr 1 (31.03.2020): 13–18. http://dx.doi.org/10.55014/pij.v3i1.88.
Pełny tekst źródłaManohar, Aswin K., Chenguang Yang, Souradip Malkhandi, G. K. Surya Prakash i S. R. Narayanan. "Enhancing the Performance of the Rechargeable Iron Electrode in Alkaline Batteries with Bismuth Oxide and Iron Sulfide Additives". Journal of The Electrochemical Society 160, nr 11 (2013): A2078—A2084. http://dx.doi.org/10.1149/2.066311jes.
Pełny tekst źródłaWeinrich, Henning, Markus Gehring, Hermann Tempel, Hans Kungl i Rüdiger-A. Eichel. "Impact of the charging conditions on the discharge performance of rechargeable iron-anodes for alkaline iron–air batteries". Journal of Applied Electrochemistry 48, nr 4 (23.02.2018): 451–62. http://dx.doi.org/10.1007/s10800-018-1176-4.
Pełny tekst źródłaLiu, Ying, Jungwon Heo, Xueying Li, Yuanzheng Sun, Younki Lee, Du-Hyun Lim, Hyo-Jun Ahn, Kwon-Koo Cho, Rong Yang i Jou-Hyeon Ahn. "Iron Disulfide Cathode Material Incorporated in Highly Ordered Mesoporous Carbon for Rechargeable Lithium Ion Batteries". Science of Advanced Materials 12, nr 9 (1.09.2020): 1265–70. http://dx.doi.org/10.1166/sam.2020.3815.
Pełny tekst źródłaZhao, Meiqi, Haoran Liu, Hongwei Zhang, Wen Chen, Hanqin Sun, Zhenhua Wang, Biao Zhang i in. "A pH-universal ORR catalyst with single-atom iron sites derived from a double-layer MOF for superior flexible quasi-solid-state rechargeable Zn–air batteries". Energy & Environmental Science 14, nr 12 (2021): 6455–63. http://dx.doi.org/10.1039/d1ee01602d.
Pełny tekst źródłaLi, Jing, Jiaqian Zheng, Chengke Wu, Huijie Zhang, Tingyi Jin, Fuquan Wang, Quanmin Li i Enbo Shangguan. "Facile synthesis of Fe3S4 microspheres as advanced anode materials for alkaline iron-based rechargeable batteries". Journal of Alloys and Compounds 874 (wrzesień 2021): 159873. http://dx.doi.org/10.1016/j.jallcom.2021.159873.
Pełny tekst źródłaYabuuchi, Naoaki, i Shinichi Komaba. "Recent research progress on iron- and manganese-based positive electrode materials for rechargeable sodium batteries". Science and Technology of Advanced Materials 15, nr 4 (sierpień 2014): 043501. http://dx.doi.org/10.1088/1468-6996/15/4/043501.
Pełny tekst źródłaBraun, Waldemar, Viktoria Erfurt, Florian Thaler, Norbert H. Menzler, Robert Spatschek i Lorenz Singheiser. "Kinetic Study of Iron Based Storage Materials for the Use in Rechargeable Oxide Batteries (ROB)". ECS Transactions 75, nr 43 (5.01.2017): 59–73. http://dx.doi.org/10.1149/07543.0059ecst.
Pełny tekst źródłaMathur, Ankita, i Aditi Halder. "One-step synthesis of bifunctional iron-doped manganese oxide nanorods for rechargeable zinc–air batteries". Catalysis Science & Technology 9, nr 5 (2019): 1245–54. http://dx.doi.org/10.1039/c8cy02498g.
Pełny tekst źródła