Artykuły w czasopismach na temat „Real-time PCR”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Real-time PCR.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Real-time PCR”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

RAZA, ABIDA, i NAUREEN A KHATTAK. "REAL TIME PCR;". Professional Medical Journal 19, nr 06 (3.11.2012): 751–59. http://dx.doi.org/10.29309/tpmj/2012.19.06.2455.

Pełny tekst źródła
Streszczenie:
In recent years, real-time PCR has come forward as a robust and widely used molecular technique in clinical and biologicalsettings. Although it can detect very minute quantities of target nucleic acid, but quantification of specific nucleic acids is not an easy task.Accurate and precise quantification is hampered by a number of factors that may include assay development and validation, fluorophoresselection, handling during sample preparation, storage, reaction procedures, and batch analysis conditions. Even minor variations aresignificantly magnified by the exponential nature of this technique. Current review gives an insight of the advantages, limitations, assaychemistries, quantitation parameters, and quality control issues related to this technology. Moreover it will also highlight the utilization of Realtime PCR in clinical oncology, virology, microbiology, and gene expression studies.
Style APA, Harvard, Vancouver, ISO itp.
2

Lederman, Lynne. "Real-Time PCR". BioTechniques 44, nr 2 (luty 2008): 179–83. http://dx.doi.org/10.2144/000112741.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Davidson, Eugene A. "REAL-TIME PCR". Shock 27, nr 6 (czerwiec 2007): 708. http://dx.doi.org/10.1097/01.shk.0000270193.65250.8e.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Kusser, Wolfgang, Sandrine Javorschi i Martin A. Gleeson. "Real-Time PCR". Cold Spring Harbor Protocols 2006, nr 1 (1.01.2006): pdb.prot4112. http://dx.doi.org/10.1101/pdb.prot4112.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Fraga, Dean, Tea Meulia i Steven Fenster. "Real-Time PCR". Current Protocols Essential Laboratory Techniques 00, nr 1 (styczeń 2008): 10.3.1–10.3.34. http://dx.doi.org/10.1002/9780470089941.et1003s00.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Busch, Ulrich. "Real-Time PCR". Journal für Verbraucherschutz und Lebensmittelsicherheit 2, nr 2 (maj 2007): 111–12. http://dx.doi.org/10.1007/s00003-007-0178-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Kang, Won, Sang-Bum Park, Youn-Hyoung Nam, Young-Chang An, Sang-Hyun Lee, Won-Cheoul Jang, Su-Min Park, Jong-Wan Kim i Song-Chun Chong. "Detection of Hepatitis B Virus Using Micro-PCR and Real-Time PCR Methods". Journal of the Korean Chemical Society 51, nr 1 (20.02.2007): 36–42. http://dx.doi.org/10.5012/jkcs.2007.51.1.036.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Heid, C. A., J. Stevens, K. J. Livak i P. M. Williams. "Real time quantitative PCR." Genome Research 6, nr 10 (1.10.1996): 986–94. http://dx.doi.org/10.1101/gr.6.10.986.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Schmittgen, Thomas D. "Real-Time Quantitative PCR". Methods 25, nr 4 (grudzień 2001): 383–85. http://dx.doi.org/10.1006/meth.2001.1260.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Gospodinović, Hristina, Ljiljana Pavlović, Marija Obradović, Sanja Dimitrijević, Sofija Jovanović i Edita Grego. "Detection of high-risk HPV genotypes using Real-time PCR". Glasnik javnog zdravlja 96, nr 4 (2022): 416–26. http://dx.doi.org/10.5937/serbjph2204416g.

Pełny tekst źródła
Streszczenie:
Discovery of the causal relationship between the human papilloma virus and cervical cancer formation increased the significance of the real-time PCR in HPV diagnostics. Based on evidence showing that they caused cervical cancer, 14 HPV types have been classified as carcinogenic (HPV16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66 and 68). This study analysed cervical smears taken from female patients, aged 19 to 25 years, using the Viasure diagnostic test for the detection of high-risk HPV genotypes and individual identification of HPV genotypes 16 and 18. A total of 110 cervical smears were analysed and 44 positive samples were detected (40%). DNA analysis of the positive samples found the following distribution of the HPV types: 27% HPV (31, 39, 56); 22% HPV (52, 59, 68); 18% HPV16; 13% HPV (33, 45, 51); 12% HPV (35, 58, 66); 8% HPV18. This study and the high positivity rate it found indicate that there is a lack of awareness among the youth on the measures of prevention, as well as a lack of understanding of HPV infection.
Style APA, Harvard, Vancouver, ISO itp.
11

Lee, Dasheng, Pei-Jer Chen i Gwo-Bin Lee. "The evolution of real-time PCR machines to real-time PCR chips". Biosensors and Bioelectronics 25, nr 7 (marzec 2010): 1820–24. http://dx.doi.org/10.1016/j.bios.2009.11.021.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

KAMJOO, Maryam NASER, i Ali NAZEMI. "VAL34LEU POLYMORPHISM DETECTION BY REAL TIME PCR ASSAY USING". / International Journal of Health Services Research and Policy 1, nr 1 (29.01.2016): 15–19. http://dx.doi.org/10.23884/ijhsrp.2016.1.1.02.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Bonetta, Laura. "Prime time for real-time PCR". Nature Methods 2, nr 4 (kwiecień 2005): 305–12. http://dx.doi.org/10.1038/nmeth0405-305.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Choi, Yeon-Jae, Sun-Ho Kim, Min-Jeong Gu, Han-Na Choe, Dong-Un Kim, Sang-Bum Cho, Su-Ki Kim, Che-Ok Jeon, Gui-Seok Bae i Sang-Seok Lee. "Quantitative Real-time PCR using Lactobacilli as Livestock Probiotics". Journal of Life Science 20, nr 12 (30.12.2010): 1896–901. http://dx.doi.org/10.5352/jls.2010.20.12.1896.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Wittwer, Carl T. "Democratizing the Real-Time PCR". Clinical Chemistry 63, nr 4 (1.04.2017): 924–25. http://dx.doi.org/10.1373/clinchem.2016.263269.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Mackay, I. M. "Real-time PCR in virology". Nucleic Acids Research 30, nr 6 (15.03.2002): 1292–305. http://dx.doi.org/10.1093/nar/30.6.1292.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Navarro, E., G. Serrano-Heras, M. J. Castaño i J. Solera. "Real-time PCR detection chemistry". Clinica Chimica Acta 439 (styczeń 2015): 231–50. http://dx.doi.org/10.1016/j.cca.2014.10.017.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Ahrberg, Christian D., Bojan Robert Ilic, Andreas Manz i Pavel Neužil. "Handheld real-time PCR device". Lab on a Chip 16, nr 3 (2016): 586–92. http://dx.doi.org/10.1039/c5lc01415h.

Pełny tekst źródła
Streszczenie:
World's smallest, fully autonomous, handheld real-time PCR was shown in this contribution. The device can quickly process up to four samples at a time with detection capability of a single DNA copy. The fully integrated system includes all required electronics for fluorescence measurement, data viewing (LCD display) and processing, and is ideal for use in small clinics and point-of-care applications.
Style APA, Harvard, Vancouver, ISO itp.
19

Wittwer, Carl T., Mark G. Herrmann, Cameron N. Gundry i Kojo S. J. Elenitoba-Johnson. "Real-Time Multiplex PCR Assays". Methods 25, nr 4 (grudzień 2001): 430–42. http://dx.doi.org/10.1006/meth.2001.1265.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Kiehne, Matthias, Cordt Grönewald, Benjamin Junge i Tanja Musiol. "Real-time-PCR als Alternative". Nachrichten aus der Chemie 56, nr 11 (listopad 2008): 1161–62. http://dx.doi.org/10.1002/nadc.200860377.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Malorny, B., A. Anderson i I. Huber. "Salmonella real-time PCR-Nachweis". Journal für Verbraucherschutz und Lebensmittelsicherheit 2, nr 2 (maj 2007): 149–56. http://dx.doi.org/10.1007/s00003-007-0167-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Nam, Youn-Hyoung, Young-Chang Ahn, Su-Min Park, Min-Ho Cho, Jae-Won Seo, Il-Kyu Yoon, Sang-Bum Park i Jong-Gyu Kim. "Comparison of Chip-Base Real-Time PCR and Tube-Base Real-Time PCR Methods for Detection of B. cereus". Journal of the Korean Chemical Society 52, nr 2 (20.04.2008): 203–6. http://dx.doi.org/10.5012/jkcs.2008.52.2.203.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Sobukawa, Hideto, Masato Ibaraki, Rui Kano, Takaaki Ito, Kazuyuki Suzuki, Hiroshi Kamata i Atsuhiko Hasegawa. "Rapid Molecular Typing of Prototheca zopfii by High Resolution Melting Real-Time PCR (PCR-HRM)". Medical Mycology Journal 54, nr 4 (2013): 341–44. http://dx.doi.org/10.3314/mmj.54.341.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Persing, David H., i Ellen Jo Baron. "Real-time PCR and the ultimate quest for real-time results". Clinical Practice 11, nr 1 (styczeń 2014): 5–9. http://dx.doi.org/10.2217/cpr.13.89.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Wong, Marisa L., i Juan F. Medrano. "Real-time PCR for mRNA quantitation". BioTechniques 39, nr 1 (lipiec 2005): 75–85. http://dx.doi.org/10.2144/05391rv01.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Namuth, Deana M., i G. Ronald Jenkins. "Real Time PCR-Some Basic Principles". Journal of Natural Resources and Life Sciences Education 34, nr 1 (2005): 124–25. http://dx.doi.org/10.2134/jnrlse.2005.0124b.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Wiwanitkit, Viroj. "TaqMan Real-Time PCR Assay forCoccidioides". Medical Mycology 48, nr 4 (czerwiec 2010): 679. http://dx.doi.org/10.3109/13693780903496625.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Zubik, A. N., G. E. Rudnitskaya, A. L. Bulyanitsa, T. A. Lukashenko i A. A. Evstrapov. "Microfluidic chips for real-time PCR". Journal of Physics: Conference Series 2086, nr 1 (1.12.2021): 012124. http://dx.doi.org/10.1088/1742-6596/2086/1/012124.

Pełny tekst źródła
Streszczenie:
Abstract The results of real-time PCR in single-chamber microfluidic chips made of silicon-glass materials and optically transparent polymethyl methacrylate are presented. Conditions for efficient thermal cycling in microchip devices with several reaction chambers are discussed. A simplified theoretical estimation of the duration of heating a liquid in a polymer microchip is proposed, the results of which correlate with experimental data.
Style APA, Harvard, Vancouver, ISO itp.
29

Aliyu, S. H. "Real-Time PCR: An Essential Guide". Journal of Antimicrobial Chemotherapy 54, nr 5 (1.11.2004): 968. http://dx.doi.org/10.1093/jac/dkh439.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Schaefer, Anke. "Real-time PCR monitors wastewater treatment". Environmental Science & Technology 37, nr 3 (luty 2003): 51A. http://dx.doi.org/10.1021/es032363f.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Houghton, Scott G., i Franklin R. Cockerill. "Real-time PCR: Overview and applications". Surgery 139, nr 1 (styczeń 2006): 1–5. http://dx.doi.org/10.1016/j.surg.2005.02.010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Bell, Andrew S., i Lisa C. Ranford-Cartwright. "Real-time quantitative PCR in parasitology". Trends in Parasitology 18, nr 8 (sierpień 2002): 338–42. http://dx.doi.org/10.1016/s1471-4922(02)02331-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Uyttendaele, M. "Real-time PCR: an essential guide". Food Microbiology 22, nr 2-3 (kwiecień 2005): 267–68. http://dx.doi.org/10.1016/j.fm.2004.08.005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Birnie, Andrew. "Improving Real-Time PCR Data Quality". Genetic Engineering & Biotechnology News 36, nr 3 (luty 2016): 10–11. http://dx.doi.org/10.1089/gen.36.03.08.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Agee, Sara. "High-Multiplex Real-Time PCR Design". Genetic Engineering & Biotechnology News 36, nr 7 (kwiecień 2016): 20–21. http://dx.doi.org/10.1089/gen.36.07.12.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Kozera, Bartłomiej, i Marcin Rapacz. "Reference genes in real-time PCR". Journal of Applied Genetics 54, nr 4 (28.09.2013): 391–406. http://dx.doi.org/10.1007/s13353-013-0173-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

McCaustland, Karen. "Real-Time PCR: An Essential Guide". Emerging Infectious Diseases 11, nr 1 (styczeń 2005): 185–86. http://dx.doi.org/10.3201/eid1101.040896.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Williams, P. Mickey. "The Beginnings of Real-Time PCR". Clinical Chemistry 55, nr 4 (1.04.2009): 833–34. http://dx.doi.org/10.1373/clinchem.2008.122226.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Valasek, Mark A., i Joyce J. Repa. "The power of real-time PCR". Advances in Physiology Education 29, nr 3 (wrzesień 2005): 151–59. http://dx.doi.org/10.1152/advan.00019.2005.

Pełny tekst źródła
Streszczenie:
In recent years, real-time polymerase chain reaction (PCR) has emerged as a robust and widely used methodology for biological investigation because it can detect and quantify very small amounts of specific nucleic acid sequences. As a research tool, a major application of this technology is the rapid and accurate assessment of changes in gene expression as a result of physiology, pathophysiology, or development. This method can be applied to model systems to measure responses to experimental stimuli and to gain insight into potential changes in protein level and function. Thus physiology can be correlated with molecular events to gain a better understanding of biological processes. For clinical molecular diagnostics, real-time PCR can be used to measure viral or bacterial loads or evaluate cancer status. Here, we discuss the basic concepts, chemistries, and instrumentation of real-time PCR and include present applications and future perspectives for this technology in biomedical sciences and in life science education.
Style APA, Harvard, Vancouver, ISO itp.
40

Kusser, Wolfgang, Sandrine Javorschi i Martin A. Gleeson. "Real-Time RT-PCR: cDNA Synthesis". Cold Spring Harbor Protocols 2006, nr 1 (1.01.2006): pdb.prot4114. http://dx.doi.org/10.1101/pdb.prot4114.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Lai, K. Kay-Yin, Linda Cook, Elizabeth M. Krantz, Lawrence Corey i Keith R. Jerome. "Calibration Curves for Real-Time PCR". Clinical Chemistry 51, nr 7 (1.07.2005): 1132–36. http://dx.doi.org/10.1373/clinchem.2004.039909.

Pełny tekst źródła
Streszczenie:
Abstract Background: Despite the increasing use of real-time PCR in the diagnosis and management of viral infections, there are no published studies adequately addressing the optimum number of calibrators, the number of replicates of each calibrator, and the frequency with which calibration needs to be repeated. This study was designed to address these issues. Methods: Cycle threshold data (ABI 7700) was collected from >50 consecutive real-time PCR runs for hepatitis B and Epstein–Barr viruses. Our routine calibration curve made from serial 10-fold dilutions run in duplicate was compared with alternative options, including duplicate 100-fold dilutions, inclusion of a low-copy calibrator, and omission of the duplicate determination. Control data were used to examine the use of an average calibration curve made from multiple runs. Results: Use of duplicate serial 10-fold dilutions led to the least imprecision, duplicate 100-fold dilutions had slightly higher imprecision, and calibration curves obtained with singlet measurements showed the greatest imprecision. For patient data, the duplicate 100-fold dilution calibration curve produced results that best matched those from the routine calibration curve. Use of singlet dilutions or inclusion of a low-copy calibrator produced poorer agreement. Variability in controls was lower with a daily calibration curve than with an average calibration curve. Conclusions: Duplicate 100-fold dilution calibration curves produced equivalent results and the same imprecision as curves with more calibrators, and thus are a valid alternative. Laboratories should carefully evaluate the variability resulting from the use of average calibration curves before adopting this approach.
Style APA, Harvard, Vancouver, ISO itp.
42

Hein, Andreas Edgar, i Ursula Bodendorf. "Real-time PCR: Duplexing without optimization". Analytical Biochemistry 360, nr 1 (styczeń 2007): 41–46. http://dx.doi.org/10.1016/j.ab.2006.10.016.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Kashani, Arash. "Real-Time PCR and Real-Time RT-PCR Applications in Food Labelling and Gene Expression Studies". International Journal of Genetics and Genomics 2, nr 1 (2014): 6. http://dx.doi.org/10.11648/j.ijgg.20140201.12.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

AOKI, Masataka, Nobuo ARAKI, Kazuaki SYUTSUBO i Takashi YAMAGUCHI. "Evaluation of Standard DNAs for Real-time PCR Quantification". Journal of Japan Society on Water Environment 34, nr 2 (2011): 41–45. http://dx.doi.org/10.2965/jswe.34.41.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Aeschbacher, S., E. Santschi, V. Gerber, H. Stalder i R. Zanoni. "Development of a real-time RT-PCR for detection of equine influenza virus". Schweiz Arch Tierheilkd 157, nr 4 (5.04.2015): 191–201. http://dx.doi.org/10.17236/sat00015.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Kim, Seung-Han, i Oh-Hun Kwon. "Detection of Colletotrichum acutatum and C. gloeosporioides by Real Time PCR". Research in Plant Disease 14, nr 3 (1.12.2008): 219–22. http://dx.doi.org/10.5423/rpd.2008.14.3.219.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Gao, Y. H., W. Miao, R. J. Guo i S. D. Li. "Real time PCR quantification of Sclerotium rolfsii in chilli tissue and soil". Plant Protection Science 51, No. 2 (2.06.2016): 61–66. http://dx.doi.org/10.17221/43/2014-pps.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Abdulina, D. R. "DETECTION OF SULFATE-REDUCING BACTERIA FROM VARIOUS ECOTOPES BY REAL-TIME PCR". Biotechnologia Acta 13, nr 2 (kwiecień 2020): 38–47. http://dx.doi.org/10.15407/biotech13.02.038.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Adamska, M., A. Leonska-Duniec, M. Sawczuk, A. Maciejewska i B. Skotarczak. " Recovery of Cryptosporidium from spiked water and stool samples measured by PCR and real time PCR". Veterinární Medicína 57, No. 5 (1.06.2012): 224–32. http://dx.doi.org/10.17221/5952-vetmed.

Pełny tekst źródła
Streszczenie:
Cryptosporidium parvum is a common intestinal protozoan parasite infecting humans and a wide range of animals, whose diagnostics present considerable difficulties. These arise from the exceptionally robust nature of the oocyst’s walls, which necessitates more stringent treatments for disruption and recovery of DNA for analysis using molecular methods. In the case of water, which is the major source of Cryptosporidium oocysts, investigations concern the detection of the presence of the oocysts. Their concentration in water is very low, and moreover, many substances that may have significance as inhibitors of DNA amplification, are present in environmental water and stool. We have carried out trials in order to assess the effectiveness of recovery of C. parvum oocysts, from spiked environmental and distilled water samples, filtrated and concentrated with the use of special laboratory equipment. Inactivation of inhibitors was carried out with use of bovine serum albumin (BSA) in PCR mixes at ten different concentrations. DNA extraction was carried out from stool samples spiked with C. parvum oocysts, concentrated using two methods, and unconcentrated. Nested PCR and a TaqMan nested real time PCR assay, targeting the 18S rRNA gene, was used to detect C. parvum DNA in spiked water and additionally in spiked stool samples. The obtained results showed that losses of C. parvum oocysts occur during the filtration and concentration of spiked water samples. The addition of small amounts of BSA (5–20 ng/µl) to PCR and TaqMan PCR mixes increases the sensitivity of both methods, but a high concentration of BSA (100 ng/µl and above) has an inhibiting effect on the polymerase reaction. The extraction of DNA from C. parvum oocysts from spiked stool samples preceded by concentration with PBS, ether and Percoll resulted in a higher copy number of the 18S rRNA gene.  
Style APA, Harvard, Vancouver, ISO itp.
50

HARA, Masayuki, i Etsuko UTAGAWA. "Comparison of Norovirus Genotypes by Real Time PCR". Journal of the Japanese Association for Infectious Diseases 82, nr 4 (2008): 354–56. http://dx.doi.org/10.11150/kansenshogakuzasshi1970.82.354.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii