Artykuły w czasopismach na temat „Reactive ion etching”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Reactive ion etching.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Reactive ion etching”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Oehrlein, Gottlieb S. "Reactive‐Ion Etching". Physics Today 39, nr 10 (październik 1986): 26–33. http://dx.doi.org/10.1063/1.881066.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Schmid, H. "Microwave etching device for reactive ion etching". Materials Science and Engineering: A 139 (lipiec 1991): 408–16. http://dx.doi.org/10.1016/0921-5093(91)90650-c.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

SHAO, TIAN-QI, TIAN-LING REN, LI-TIAN LIU, JUN ZHU i ZHI-JIAN LI. "Reactive Ion Etching and Ion Beam Etching for Ferroelectric Memories". Integrated Ferroelectrics 61, nr 1 (sierpień 2004): 213–20. http://dx.doi.org/10.1080/10584580490459288.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Lim, Nomin, Yeon Sik Choi, Alexander Efremov i Kwang-Ho Kwon. "Dry Etching Performance and Gas-Phase Parameters of C6F12O + Ar Plasma in Comparison with CF4 + Ar". Materials 14, nr 7 (24.03.2021): 1595. http://dx.doi.org/10.3390/ma14071595.

Pełny tekst źródła
Streszczenie:
This research work deals with the comparative study of C6F12O + Ar and CF4 + Ar gas chemistries in respect to Si and SiO2 reactive-ion etching processes in a low power regime. Despite uncertain applicability of C6F12O as the fluorine-containing etchant gas, it is interesting because of the liquid (at room temperature) nature and weaker environmental impact (lower global warming potential). The combination of several experimental techniques (double Langmuir probe, optical emission spectroscopy, X-ray photoelectron spectroscopy) allowed one (a) to compare performances of given gas systems in respect to the reactive-ion etching of Si and SiO2; and (b) to associate the features of corresponding etching kinetics with those for gas-phase plasma parameters. It was found that both gas systems exhibit (a) similar changes in ion energy flux and F atom flux with variations on input RF power and gas pressure; (b) quite close polymerization abilities; and (c) identical behaviors of Si and SiO2 etching rates, as determined by the neutral-flux-limited regime of ion-assisted chemical reaction. Principal features of C6F12O + Ar plasma are only lower absolute etching rates (mainly due to the lower density and flux of F atoms) as well as some limitations in SiO2/Si etching selectivity.
Style APA, Harvard, Vancouver, ISO itp.
5

Sandhu, G. S., i W. K. Chu. "Reactive ion etching of diamond". Applied Physics Letters 55, nr 5 (31.07.1989): 437–38. http://dx.doi.org/10.1063/1.101890.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Verdonck, P., G. Brasseur i J. Swart. "Reactive ion etching and plasma etching of tungsten". Microelectronic Engineering 21, nr 1-4 (kwiecień 1993): 329–32. http://dx.doi.org/10.1016/0167-9317(93)90084-i.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Chinn, J. D. "Ion beam enhanced magnetron reactive ion etching". Applied Physics Letters 51, nr 24 (14.12.1987): 2007–9. http://dx.doi.org/10.1063/1.98275.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Matocha, Kevin, Chris S. Cowen, Richard Beaupre i Jesse B. Tucker. "Effect of Reactive-Ion Etching on Thermal Oxide Properties on 4H-SiC". Materials Science Forum 527-529 (październik 2006): 983–86. http://dx.doi.org/10.4028/www.scientific.net/msf.527-529.983.

Pełny tekst źródła
Streszczenie:
4H-SiC MOS capacitors were used to characterize the effect of reactive-ion etching of the SiC surface on the electrical properties of N2O-grown thermal oxides. The oxide breakdown field reduces from 9.5 MV/cm with wet etching to saturate at 9.0 MV/cm with 30% reactive-ion over-etching. Additionally, the conduction-band offset barrier height, φB, progressively decreases from 2.51 eV with wet etching to 2.46 eV with 45% reactive-ion over-etching.
Style APA, Harvard, Vancouver, ISO itp.
9

Jeng, S. J., i G. S. Oehrlein. "Silicon near-surface damage induced by reactive ion etching". Proceedings, annual meeting, Electron Microscopy Society of America 45 (sierpień 1987): 244–45. http://dx.doi.org/10.1017/s0424820100126123.

Pełny tekst źródła
Streszczenie:
Reactive ion etching (RIE) is an anisotropic etching process which has been used to etch silicon oxide, silicon nitride and polysilicon films. Due to the nonuniformities of etch rate and film thickness, overetching is often required to ensure the complete removal of these films. Previous X-ray photoemission spectroscopy (XPS), He ion channeling, nuclear reaction profiling, Raman scattering and ellipsometry studies have indicated the presence of a fluorocarbon film (30-40 Å) on Si, a heavily disordered layer (∼30 Å) and the etching gas related impurity implantation region (∼250 Å) underneath the Si surface caused by CF4/x% H2 (0≤x≤40) reactive ion etching. In the present investigation, high resolution electron microscopy (HREM) is used to study the structures and distribution of lattice defects in the heavily disordered region. Particular attention is paid to the effects of overetch time and hydrogen addition to CF4 etching gas on Si near-surface damage structures.
Style APA, Harvard, Vancouver, ISO itp.
10

Anderson, Ron. "Ion-Beam Milling Materials with Applications to TEM Specimen Preparation". Proceedings, annual meeting, Electron Microscopy Society of America 54 (11.08.1996): 266–67. http://dx.doi.org/10.1017/s0424820100163794.

Pełny tekst źródła
Streszczenie:
For the last thirty years, ion milling has been an indispensable part of preparing TEM specimens in the physical sciences. While great improvements have been made in our ability to thin most materials to the point where ion milling may not be a requirement, there will still be a need to utilize ion milling to clean and polish specimens and to provide small amounts of incremental thinning as needed. Thanks mainly to the work of Bama we now understand a great deal about the physics of ion milling. We also benefit from the works of a number of investigators who have studied the artifacts produced by ion milling (see Barber for a review).Ion milling is a subset of the topic “dry etching,” which consists of two major categories: glow discharge methods and ion beam methods. Glow discharge methods include plasma etching, reactive ion etching, and glow discharge sputter etching. These techniques have little application in TEM specimen preparation aside from surface cleaning. The reactive ion etching literature is a source for suggesting gas/specimen combinations to perform chemically-assisted ion beam etching (CAIBE), to be discussed below. The other major dry etching category, ion beam methods, includes ion milling, reactive ion beam etching, and CAIBE.
Style APA, Harvard, Vancouver, ISO itp.
11

PEARTON, S. J. "REACTIVE ION ETCHING OF III–V SEMICONDUCTORS". International Journal of Modern Physics B 08, nr 14 (30.06.1994): 1781–876. http://dx.doi.org/10.1142/s0217979294000762.

Pełny tekst źródła
Streszczenie:
Anisotropic dry etching by a number of different techniques is widely employed in III–V compound semiconductor technology for pattern transfer, device isolation, mesa formation, grating fabrication and via hole etching. In this paper we review the different dry etching techniques, the plasma chemistries employed for III–V materials and electrical and optical changes to the near-surface of the etched sample. We give examples of the use of dry etching in fabrication of heterojunction bipolar transistors, field effect transistors and various types of semiconductor lasers. Particular attention is paid to the characteristics of Electron Cyclotron Resonance discharges operating at high ion densities (≥5×1011 cm −3) and low pressure (~1 mTorr) with low ion energies (≤15 eV ) which are ideally suited for dry etching of III–V semiconductors.
Style APA, Harvard, Vancouver, ISO itp.
12

Kusumi, Yoshihiro, Nobuo Fujiwara, Junko Matsumoto i Masahiro Yoneda. "Effect ofN2Addition on Aluminum Alloy Etching by Electron Cyclotron Resonance Reactive Ion Etching and Magnetically Enhanced Reactive Ion Etching". Japanese Journal of Applied Physics 34, Part 1, No. 4B (30.04.1995): 2147–51. http://dx.doi.org/10.1143/jjap.34.2147.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Gu, Tieer. "Damage to Si substrates during SiO2 etching: A comparison of reactive ion etching and magnetron-enhanced reactive ion etching". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 12, nr 2 (marzec 1994): 567. http://dx.doi.org/10.1116/1.587391.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Popova, K. "Reactive ion etching of ion-plated carbon films". Vacuum 48, nr 7-9 (wrzesień 1997): 681–84. http://dx.doi.org/10.1016/s0042-207x(97)00068-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Dems, B. C., F. Rodriguez, C. M. Solbrig, Y. M. N. Namaste i S. K. Obendorf. "Reactive Ion Etching of Polymer Films". International Polymer Processing 4, nr 3 (wrzesień 1989): 183–87. http://dx.doi.org/10.3139/217.890183.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Kondo, Shingo, Hiroki Kondo, Yudai Miyawaki, Hajime Sasaki, Hiroyuki Kano, Mineo Hiramatsu i Masaru Hori. "Reactive Ion Etching of Carbon Nanowalls". Japanese Journal of Applied Physics 50, nr 7R (1.07.2011): 075101. http://dx.doi.org/10.7567/jjap.50.075101.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Nagy, A. G. "Sidewall Tapering in Reactive Ion Etching". Journal of The Electrochemical Society 132, nr 3 (1.03.1985): 689–93. http://dx.doi.org/10.1149/1.2113932.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Schaible, P. M., i G. C. Schwartz. "Selective Reactive Ion Etching of TiW". Journal of The Electrochemical Society 132, nr 3 (1.03.1985): 730–31. http://dx.doi.org/10.1149/1.2113941.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Blumenstock, K. "Anisotropic reactive ion etching of titanium". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 7, nr 4 (lipiec 1989): 627. http://dx.doi.org/10.1116/1.584806.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Hedlund, C., H. ‐O Blom i S. Berg. "Microloading effect in reactive ion etching". Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 12, nr 4 (lipiec 1994): 1962–65. http://dx.doi.org/10.1116/1.578990.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Kondo, Shingo, Hiroki Kondo, Yudai Miyawaki, Hajime Sasaki, Hiroyuki Kano, Mineo Hiramatsu i Masaru Hori. "Reactive Ion Etching of Carbon Nanowalls". Japanese Journal of Applied Physics 50, nr 7 (20.07.2011): 075101. http://dx.doi.org/10.1143/jjap.50.075101.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Zhang, Congchun, Chunsheng Yang i Duifu Ding. "Deep reactive ion etching of PMMA". Applied Surface Science 227, nr 1-4 (kwiecień 2004): 139–43. http://dx.doi.org/10.1016/j.apsusc.2003.11.050.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Dominguez, C., J. Muñoz, R. Gonzalez i M. Tudanca. "CHF3-reactive ion etching for waveguides". Sensors and Actuators A: Physical 37-38 (czerwiec 1993): 779–83. http://dx.doi.org/10.1016/0924-4247(93)80131-y.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Avtiushkov, A. P., V. A. Labunov i A. F. Stekolnikov. "Reactive ion etching of gallium arsenide". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 39, nr 1-4 (marzec 1989): 496–99. http://dx.doi.org/10.1016/0168-583x(89)90834-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Powell, Heather M., i John J. Lannutti. "Nanofibrillar Surfaces via Reactive Ion Etching". Langmuir 19, nr 21 (październik 2003): 9071–78. http://dx.doi.org/10.1021/la0349368.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Banks, P. M. "Plasma temperatures during reactive ion etching". Microelectronic Engineering 11, nr 1-4 (kwiecień 1990): 603–6. http://dx.doi.org/10.1016/0167-9317(90)90180-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

M.S. Mikhailenko, A.E. Pestov, A.K. Chernyshev, A.A. Perekalov, M.V. Zorina i N.I. Chkhalo. "Prospects for the use of reactive ion-beam etching of fused quartz with a mixture of tetrafluoromethane and argon for aspherizing the surface of optical elements". Technical Physics 92, nr 8 (2022): 1062. http://dx.doi.org/10.21883/tp.2022.08.54574.111-22.

Pełny tekst źródła
Streszczenie:
The paper proposes to use the discharge energy for the synthesis of chemically active particles in order to correct the shape and aspherize the surface of optical elements by reactive ion-beam etching. A stand was assembled on the basis of a radio frequency source of accelerated ions KLAN-105M, the design of which allows working with reactive gases. The possibility of increasing the etching rate of fused quartz by more than 5 times compared to ion etching with inert gases by creating a mixture of tetrafluoromethane (CF4) and argon (Ar) in a ratio of 1:1 is shown, while maintaining the initially smooth surface roughness ((sigmaeff~0.3 nm) in the range of spatial frequencies ν[5.0·10-2-6.4·101 μm-1]. Keywords: ion etching, reactive ion etching, roughness, surface, X-ray optics.
Style APA, Harvard, Vancouver, ISO itp.
28

Ильинская, Н. Д., Н. М. Лебедева, Ю. М. Задиранов, П. А. Иванов, Т. П. Самсонова, О. И. Коньков i А. С. Потапов. "Микропрофилирование 4H-SiC сухим травлением в технологии формирования структуры полевого транзистора с затвором Шоттки". Физика и техника полупроводников 54, nr 1 (2020): 97. http://dx.doi.org/10.21883/ftp.2020.01.48783.9223.

Pełny tekst źródła
Streszczenie:
Abstract Methods of micro-profiling of 4 H -SiC are described: formation of mesa structures with inclined walls (off-vertical wall inclination angle exceeding 45°) by reactive ion etching; etching of mesa structures with a flat bottom and inclined walls (off-vertical wall inclination angle being smaller than 45°) by ion-beam and reactive ion plasma etching. The application of etching methods in the fabrication technology of 4 H -SiC-based mesa-epitaxial field-effect transistors with a Schottky gate is demonstrated.
Style APA, Harvard, Vancouver, ISO itp.
29

Sato, Masaaki. "Dopant-dependent Ion Assisted Etching Kinetics in Highly Doped Polysilicon Reactive Ion Etching". Japanese Journal of Applied Physics 37, Part 1, No. 9A (15.09.1998): 5039–46. http://dx.doi.org/10.1143/jjap.37.5039.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Davis, Robert J. "Steady-state damage profiles due to reactive ion etching and ion-assisted etching". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 13, nr 2 (marzec 1995): 242. http://dx.doi.org/10.1116/1.588358.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Hirano, Makoto, i Kazuyoshi Asai. "GaAs Taper Etching by Mixture Gas Reactive Ion Etching System". Japanese Journal of Applied Physics 30, Part 2, No. 12B (15.12.1991): L2136—L2138. http://dx.doi.org/10.1143/jjap.30.l2136.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Sato, Tetsuo, Nobuo Fujiwara i Masahiro Yoneda. "Mechanism of Reactive Ion Etching Lag for Aluminum Alloy Etching". Japanese Journal of Applied Physics 34, Part 1, No. 4B (30.04.1995): 2142–46. http://dx.doi.org/10.1143/jjap.34.2142.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Grigoras, Kestutis, i Sami Franssila. "“Etching under the corner” - inclined macropores by reactive ion etching". physica status solidi (a) 206, nr 6 (czerwiec 2009): 1245–49. http://dx.doi.org/10.1002/pssa.200881066.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Lussier, P., M. Bélanger, M. Meunier i J. F. Currie. "CF4–Ar reactive ion etching of gallium arsenide". Canadian Journal of Physics 67, nr 4 (1.04.1989): 259–61. http://dx.doi.org/10.1139/p89-045.

Pełny tekst źródła
Streszczenie:
A systematic study of the etch rate of GaAs and of positive photoresist for different mixtures of argon and carbon tetrafluoride was conducted over radio frequency powers (from 0.06 W/cm2 to 0.55 W/cm2), pressures (from 6 to 35 mTorr (1 Torr = 133.3 Pa)), and concentrations of CF4 in Ar (0–60% with a constant mass flow of 10 sccm). Capacitance–voltage and I–V measurements on GaAs diodes made after reactive ion etching were carried out to estimate possible etching damage through thin dielectric film and surface state creation. Etch rates up to 200 Å/min were obtained on GaAs with low damage in a 40% CF4, 20 mTorr, and 0.55 W/cm2 plasma while the etch rate of the patterning photoresist was 600 Å/min. These results are in good agreement with those reported in literature. The ideality factors and Schottky barrier heights of reactive ion etching of GaAs are comparable to those obtained by sulphuric and peroxide acid etching. However, reactive ion etched samples seem to suffer from higher surface state densities as measured by C–V techniques.
Style APA, Harvard, Vancouver, ISO itp.
35

Steinbruchel, C. "Ion–surface interactions: from sputtering to reactive ion etching". Materials Science and Technology 8, nr 7 (lipiec 1992): 565–73. http://dx.doi.org/10.1179/mst.1992.8.7.565.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Peng, Dong Sheng, Zhi Gang Chen i Cong Cong Tan. "Study of Silicon Substrate Microspheres Reactive Ion Etching Technique". Advanced Materials Research 542-543 (czerwiec 2012): 945–48. http://dx.doi.org/10.4028/www.scientific.net/amr.542-543.945.

Pełny tekst źródła
Streszczenie:
The paper studies the microspheres etching technique, the silicon pillar arrays are fabricated using polystyrene particles as etching mask by Reactive Ion Etching. Obtained the substrate can be Lateral epitaxial. The influence of different parameters in etch process are investigated on silicon pillar arrays in detail. A large-area Si pillar can be obtained on Si substrate by controlling the suitable etch parameters. The approach reported here offers a possibility to product large-area pillar.
Style APA, Harvard, Vancouver, ISO itp.
37

AKINAGA, Hiro, Fumiyoshi TAKANO, Shigeno MATSUMOTO i Wilson A. T. DIÑO. "Reactive Ion Etching of Transition-Metal Alloys". SHINKU 49, nr 12 (2006): 716–21. http://dx.doi.org/10.3131/jvsj.49.716.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Shaqfeh, Eric S. G., i Charles W. Jurgensen. "Simulation of reactive ion etching pattern transfer". Journal of Applied Physics 66, nr 10 (15.11.1989): 4664–75. http://dx.doi.org/10.1063/1.343823.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Lin, M. E., Z. F. Fan, Z. Ma, L. H. Allen i H. Morkoç. "Reactive ion etching of GaN using BCl3". Applied Physics Letters 64, nr 7 (14.02.1994): 887–88. http://dx.doi.org/10.1063/1.110985.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Singh, B., J. H. Thomas III i V. Patel. "Magnetic multipole‐based reactive ion etching reactor". Applied Physics Letters 60, nr 19 (11.05.1992): 2335–37. http://dx.doi.org/10.1063/1.107018.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Tacito, Robert D., i Christoph Steinbrüchel. "Patterning of Benzocyclobutene by Reactive Ion Etching". Journal of The Electrochemical Society 143, nr 8 (1.08.1996): 2695–97. http://dx.doi.org/10.1149/1.1837074.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Walter, Lee. "Photoresist Damage in Reactive Ion Etching Processes". Journal of The Electrochemical Society 144, nr 6 (1.06.1997): 2150–54. http://dx.doi.org/10.1149/1.1837755.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Zhao, Qiang, i Paul A. Kohl. "Reactive Ion Etching of Silicon Containing Polynorbornenes". Journal of The Electrochemical Society 145, nr 4 (1.04.1998): 1257–62. http://dx.doi.org/10.1149/1.1838448.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Choi, Dae-Geun, Hyung Kyun Yu, Se Gyu Jang i Seung-Man Yang. "Colloidal Lithographic Nanopatterning via Reactive Ion Etching". Journal of the American Chemical Society 126, nr 22 (czerwiec 2004): 7019–25. http://dx.doi.org/10.1021/ja0319083.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Chinoy, P. B. "Reactive ion etching of benzocyclobutene polymer films". IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part C 20, nr 3 (lipiec 1997): 199–206. http://dx.doi.org/10.1109/3476.649441.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Watanabe, F. "Oxygen reactive ion etching of organosilicon polymers". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 4, nr 1 (styczeń 1986): 422. http://dx.doi.org/10.1116/1.583347.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Pearton, S. J., R. J. Shul, G. F. Mclane i C. Constantine. "Reactive ion etching of III–V nitrides". Solid-State Electronics 41, nr 2 (luty 1997): 159–63. http://dx.doi.org/10.1016/s0038-1101(96)00158-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Woo, Bryan W. K., Shannon C. Gott, Ryan A. Peck, Dong Yan, Mathias W. Rommelfanger i Masaru P. Rao. "Ultrahigh Resolution Titanium Deep Reactive Ion Etching". ACS Applied Materials & Interfaces 9, nr 23 (czerwiec 2017): 20161–68. http://dx.doi.org/10.1021/acsami.6b16518.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Coburn, J. W. "Role of ions in reactive ion etching". Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 12, nr 4 (lipiec 1994): 1417–24. http://dx.doi.org/10.1116/1.579330.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Congxin, Ren, Yang Jie, Zheng Yanfang, Chen Lizhi, Chen Guoliang i Tsou Shichang. "Reactive ion beam etching characteristics of LiNbO3". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 19-20 (styczeń 1987): 1018–21. http://dx.doi.org/10.1016/s0168-583x(87)80202-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii