Gotowa bibliografia na temat „Reactive ion etching”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Reactive ion etching”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Reactive ion etching"

1

Oehrlein, Gottlieb S. "Reactive‐Ion Etching". Physics Today 39, nr 10 (październik 1986): 26–33. http://dx.doi.org/10.1063/1.881066.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Schmid, H. "Microwave etching device for reactive ion etching". Materials Science and Engineering: A 139 (lipiec 1991): 408–16. http://dx.doi.org/10.1016/0921-5093(91)90650-c.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

SHAO, TIAN-QI, TIAN-LING REN, LI-TIAN LIU, JUN ZHU i ZHI-JIAN LI. "Reactive Ion Etching and Ion Beam Etching for Ferroelectric Memories". Integrated Ferroelectrics 61, nr 1 (sierpień 2004): 213–20. http://dx.doi.org/10.1080/10584580490459288.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Lim, Nomin, Yeon Sik Choi, Alexander Efremov i Kwang-Ho Kwon. "Dry Etching Performance and Gas-Phase Parameters of C6F12O + Ar Plasma in Comparison with CF4 + Ar". Materials 14, nr 7 (24.03.2021): 1595. http://dx.doi.org/10.3390/ma14071595.

Pełny tekst źródła
Streszczenie:
This research work deals with the comparative study of C6F12O + Ar and CF4 + Ar gas chemistries in respect to Si and SiO2 reactive-ion etching processes in a low power regime. Despite uncertain applicability of C6F12O as the fluorine-containing etchant gas, it is interesting because of the liquid (at room temperature) nature and weaker environmental impact (lower global warming potential). The combination of several experimental techniques (double Langmuir probe, optical emission spectroscopy, X-ray photoelectron spectroscopy) allowed one (a) to compare performances of given gas systems in respect to the reactive-ion etching of Si and SiO2; and (b) to associate the features of corresponding etching kinetics with those for gas-phase plasma parameters. It was found that both gas systems exhibit (a) similar changes in ion energy flux and F atom flux with variations on input RF power and gas pressure; (b) quite close polymerization abilities; and (c) identical behaviors of Si and SiO2 etching rates, as determined by the neutral-flux-limited regime of ion-assisted chemical reaction. Principal features of C6F12O + Ar plasma are only lower absolute etching rates (mainly due to the lower density and flux of F atoms) as well as some limitations in SiO2/Si etching selectivity.
Style APA, Harvard, Vancouver, ISO itp.
5

Sandhu, G. S., i W. K. Chu. "Reactive ion etching of diamond". Applied Physics Letters 55, nr 5 (31.07.1989): 437–38. http://dx.doi.org/10.1063/1.101890.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Verdonck, P., G. Brasseur i J. Swart. "Reactive ion etching and plasma etching of tungsten". Microelectronic Engineering 21, nr 1-4 (kwiecień 1993): 329–32. http://dx.doi.org/10.1016/0167-9317(93)90084-i.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Chinn, J. D. "Ion beam enhanced magnetron reactive ion etching". Applied Physics Letters 51, nr 24 (14.12.1987): 2007–9. http://dx.doi.org/10.1063/1.98275.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Matocha, Kevin, Chris S. Cowen, Richard Beaupre i Jesse B. Tucker. "Effect of Reactive-Ion Etching on Thermal Oxide Properties on 4H-SiC". Materials Science Forum 527-529 (październik 2006): 983–86. http://dx.doi.org/10.4028/www.scientific.net/msf.527-529.983.

Pełny tekst źródła
Streszczenie:
4H-SiC MOS capacitors were used to characterize the effect of reactive-ion etching of the SiC surface on the electrical properties of N2O-grown thermal oxides. The oxide breakdown field reduces from 9.5 MV/cm with wet etching to saturate at 9.0 MV/cm with 30% reactive-ion over-etching. Additionally, the conduction-band offset barrier height, φB, progressively decreases from 2.51 eV with wet etching to 2.46 eV with 45% reactive-ion over-etching.
Style APA, Harvard, Vancouver, ISO itp.
9

Jeng, S. J., i G. S. Oehrlein. "Silicon near-surface damage induced by reactive ion etching". Proceedings, annual meeting, Electron Microscopy Society of America 45 (sierpień 1987): 244–45. http://dx.doi.org/10.1017/s0424820100126123.

Pełny tekst źródła
Streszczenie:
Reactive ion etching (RIE) is an anisotropic etching process which has been used to etch silicon oxide, silicon nitride and polysilicon films. Due to the nonuniformities of etch rate and film thickness, overetching is often required to ensure the complete removal of these films. Previous X-ray photoemission spectroscopy (XPS), He ion channeling, nuclear reaction profiling, Raman scattering and ellipsometry studies have indicated the presence of a fluorocarbon film (30-40 Å) on Si, a heavily disordered layer (∼30 Å) and the etching gas related impurity implantation region (∼250 Å) underneath the Si surface caused by CF4/x% H2 (0≤x≤40) reactive ion etching. In the present investigation, high resolution electron microscopy (HREM) is used to study the structures and distribution of lattice defects in the heavily disordered region. Particular attention is paid to the effects of overetch time and hydrogen addition to CF4 etching gas on Si near-surface damage structures.
Style APA, Harvard, Vancouver, ISO itp.
10

Anderson, Ron. "Ion-Beam Milling Materials with Applications to TEM Specimen Preparation". Proceedings, annual meeting, Electron Microscopy Society of America 54 (11.08.1996): 266–67. http://dx.doi.org/10.1017/s0424820100163794.

Pełny tekst źródła
Streszczenie:
For the last thirty years, ion milling has been an indispensable part of preparing TEM specimens in the physical sciences. While great improvements have been made in our ability to thin most materials to the point where ion milling may not be a requirement, there will still be a need to utilize ion milling to clean and polish specimens and to provide small amounts of incremental thinning as needed. Thanks mainly to the work of Bama we now understand a great deal about the physics of ion milling. We also benefit from the works of a number of investigators who have studied the artifacts produced by ion milling (see Barber for a review).Ion milling is a subset of the topic “dry etching,” which consists of two major categories: glow discharge methods and ion beam methods. Glow discharge methods include plasma etching, reactive ion etching, and glow discharge sputter etching. These techniques have little application in TEM specimen preparation aside from surface cleaning. The reactive ion etching literature is a source for suggesting gas/specimen combinations to perform chemically-assisted ion beam etching (CAIBE), to be discussed below. The other major dry etching category, ion beam methods, includes ion milling, reactive ion beam etching, and CAIBE.
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Reactive ion etching"

1

Baker, Michael Douglas. "In-situ monitoring of reactive ion etching". Diss., Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/15352.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Morris, Bryan George Oneal. "In situ monitoring of reactive ion etching". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/31688.

Pełny tekst źródła
Streszczenie:
Thesis (Ph.D)--Electrical and Computer Engineering, Georgia Institute of Technology, 2010.
Committee Chair: May, Gary; Committee Member: Brand,Oliver; Committee Member: Hasler,Paul; Committee Member: Kohl,Paul; Committee Member: Shamma,Jeff. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Style APA, Harvard, Vancouver, ISO itp.
3

Pugh, C. J. "End point detection in reactive ion etching". Thesis, University College London (University of London), 2013. http://discovery.ucl.ac.uk/1398304/.

Pełny tekst źródła
Streszczenie:
End-point detection for deep reactive ion etch of silicon in the semiconductor industry has been investigated with a focus on statistical treatments on optical emission spectroscopy. The data reduction technique Principal components analysis (PCA) has been briefly reviewed and analysed as an introduction to independent component analysis (ICA). ICA is a computational dimension reduction technique capable of separating multivariate data into single components. In this instance PCA and ICA are used in to combine the spectral channels of optical emission spectroscopy of plasma processes into a reduced number of components. ICA is based on a fixed-point iteration process maximizing non-gaussianity as a measure of statistical independence. ICA has been shown to offer an improvement in signal to noise ratio when compared to principal component analysis, which has been widely used in previous studies into end-pointing. In addition to the end-point investigation, a study was carried out into the fabrication of arrays of free standing silicon nanorods. The fabrication process consisted of an electron beam lithograpy stage to pattern bare silicon, followed by a deep reactive ion etch - using the Bosch process - to create the nanorods. A variety of difference diameter nanorods, with a selection of pitch dimensions were created using this technique.
Style APA, Harvard, Vancouver, ISO itp.
4

Hedgecock, Ian. "The methane/hydrogen reactive ion etching of InP". Thesis, University of Bristol, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240193.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Landi, S. "Reactive ion etching techniques for uncooled pyroelectric detectors". Thesis, Cranfield University, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.423086.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Dickenson, Andrew C. "Measurement and simulation of ion energy distributions in a reactive ion etcher". Thesis, University of Bristol, 1994. http://hdl.handle.net/1983/2e692fca-5cd1-48da-bb7e-6bb76a1bb23b.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

May, Paul W. "The energies of ions, electrons and neutral in reactive ion etching plasmas". Thesis, University of Bristol, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303946.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Robertson, C. J. "Factors controlling etch anisotropy in plasmas". Thesis, University of Surrey, 1990. http://epubs.surrey.ac.uk/843224/.

Pełny tekst źródła
Streszczenie:
The use of radio frequency (rf) plasma techniques to produce fine structures of precise geometry is widespread in the microelectronics industry. An important factor influencing the functionality of fabricated devices is the wall angle of these structures. In certain applications vertical walls are required - for example to minimise mask degradation and maximise gate densities; in others a sloping sidewall is preferred - to minimise stress in metal coatings when making electrical contact through 'via' holes, for instance. This fine control cannot be achieved on micron and sub-micron scale devices using conventional 'wet' chemical processing techniques and has led to the adoption of so-called 'dry' processing techniques using plasmas. Both vertical and sloping wall profiles can be produced depending upon the plasma conditions. It is apparent, therefore, that a thorough understanding of the processes affecting the etch profile is important. Reactive ion etching (RIE) has been employed to produce micron, and sub-micron size structures in polyimide using an oxygen plasma. Present models of etch directionality all make the initial assumption that the directional component of the etching process can be attributed solely to O2+ ion bombardment of the exposed horizontal surface of the wafer driven by the electric 'sheath' field developed above the electrode. Whether species such as O+ and even multiply charged reactive species such as O++ and O+++ can legitimately be neglected in formulating such a model has yet to be established. That such multiply ionized species exist, however, is highly probable given that plasmas are well known to emit strongly in the ultraviolet. The etching system developed to investigate these problems was equipped with diagnostic techniques including optical emission spectroscopy, mass spectrometry, and a grid energy analyser. The optical emission spectrometer was novel in being capable of measuring emission from the far-ultraviolet emission spectrum of the plasma and was therefore able to detect the high energy ultraviolet light and the singly and multiply ionised species from which this radiation is emitted. Using this technique the role of multiply-ionised species in controlling etch anisotropy was investigated. Results are also presented, obtained from a retarding grid, particle energy analyser built into the surface of the earth electrode, which indicate increased charged particle flux and energy at low pressure providing further information with regard to the process dynamics. The influence of gas pressure and rf excitation frequency on the resultant etch profile have been investigated. Results are presented showing the presence of doubly-ionised atomic oxygen O++ in the plasma. It is shown in this work that O++ also has a role in etch anisotropy at low pressure. This and other more highly charged species need to be considered, therefore, in formulating models of etch anisotropy, etch rate, and etch chemistry and reaction mechanisms. The role of ultraviolet irradiation which is itself of sufficient energy to induce surface reactions must also be considered.
Style APA, Harvard, Vancouver, ISO itp.
9

Chatfield, Robert J. "Mass and optical spectroscopy of CF₄ + O₂ plasmas and their application to the etching of Si, Ge and SiGe alloys". Thesis, University of Bristol, 1993. http://hdl.handle.net/1983/821a17c4-1dad-442b-9179-1f521e571c0f.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Fagan, James G. "Reactive ion etching of polymide films using a radio frequency discharge /". Online version of thesis, 1987. http://hdl.handle.net/1850/10284.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Reactive ion etching"

1

Fagan, James G. Reactive ion etching of polyimide films using a radio frequency discharge. Rochester N. Y: Rochester Institute of Technology, Materials Science and Engineering, 1987.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Sahafi, Hossein Fariborz. A study of reactive ion etching of gallium arsenide in mixtures of methane and hydrogen plasmas. [London]: [Middlesex University], 1992.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Molloy, James. Argon and argon-chlorine plasma reactive ion etching and surface modification of transparent conductive tin oxide thin films for high resolution flat panel display electrode matrices. [s.l: The Author], 1997.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Reactive ion etching"

1

Franssila, Sami, i Lauri Sainiemi. "Reactive Ion Etching (RIE)". W Encyclopedia of Microfluidics and Nanofluidics, 2911–21. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-5491-5_1344.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Franssila, Sami, i Lauri Sainiemi. "Reactive Ion Etching (RIE)". W Encyclopedia of Microfluidics and Nanofluidics, 1–13. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-3-642-27758-0_1344-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Pan, W. S., i A. J. Steckl. "Reactive Ion Etching for SiC Device Fabrication". W Amorphous and Crystalline Silicon Carbide and Related Materials, 192–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-93406-3_29.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Rangelow, I. W., i P. Hudek. "Lithography and Reactive Ion Etching in Microfabrication". W Photons and Local Probes, 325–44. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0423-4_30.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Rangelow, I. W., i R. Kassing. "Silicon Microreactors made by Reactive Ion Etching". W Microreaction Technology, 169–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-72076-5_19.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Hartney, M. A., D. W. Hess i D. S. Soane. "Reactive Ion Etching of Silicon Containing Resists". W Plasma-Surface Interactions and Processing of Materials, 503–5. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-1946-4_33.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Müller, Roland. "Ellipsometry for Process Control in Reactive Ion Etching". W Micro System Technologies 90, 219–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-45678-7_30.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Hamaguchi, S., i H. Ohta. "Modeling of Reactive Ion Etching for Si/Si02Systems". W Simulation of Semiconductor Processes and Devices 2001, 170–73. Vienna: Springer Vienna, 2001. http://dx.doi.org/10.1007/978-3-7091-6244-6_37.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Xia, Jun Hai, E. Rusli, R. Gopalakrishnan, S. F. Choy, Chin Che Tin, J. Ahn i S. F. Yoon. "Reactive Ion Etching Induced Surface Damage of Silicon Carbide". W Materials Science Forum, 765–68. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-963-6.765.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Pan, W. S., i A. J. Steckl. "Mechanisms in Reactive Ion Etching of Silicon Carbide Thin Films". W Springer Proceedings in Physics, 217–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-75048-9_43.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Reactive ion etching"

1

WU, YiHan, i HaiLin He. "Reactive ion etching and deep reactive ion etching processes". W 2nd International Conference on Mechanical, Electronics, and Electrical and Automation Control (METMS 2022), redaktor Xuexia Ye. SPIE, 2022. http://dx.doi.org/10.1117/12.2634681.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

WU, YiHan, i HaiLin He. "Reactive ion etching and deep reactive ion etching processes". W 2nd International Conference on Mechanical, Electronics, and Electrical and Automation Control (METMS 2022), redaktor Xuexia Ye. SPIE, 2022. http://dx.doi.org/10.1117/12.2634681.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Sukanek, Peter C., i Glynis Sullivan. "Reactive Ion Etching Of Silicon Dioxide". W Hague International Symposium, redaktorzy Harry L. Stover i Stefan Wittekoek. SPIE, 1987. http://dx.doi.org/10.1117/12.975614.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Vawter, G. Allen. "Reactive Ion Etching Of Laser Structures". W 1988 Semiconductor Symposium, redaktorzy Harold G. Craighead i Jagdish Narayan. SPIE, 1988. http://dx.doi.org/10.1117/12.947383.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Choudhary, A., J. Cugat, K. Pradeesh, R. Sole, F. Diaz, M. Aguilo, H. M. H. Chong i D. P. Shepherd. "On the reactive ion etching of RbTiOPO4". W 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC. IEEE, 2013. http://dx.doi.org/10.1109/cleoe-iqec.2013.6800965.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

SATO, Masayuki, Daisuke KIMURA, Nobuyuki TAKENAKA, Shigeo ONISHI, Keizo SAKIYAMA i Tohru HARA. "Low Damage Magnetron Enhanced Reactive Ion Etching". W 1991 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 1991. http://dx.doi.org/10.7567/ssdm.1991.pb2-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Patel, Kaushal S., Victor Pham, Wenjie Li, Mahmoud Khojasteh i Pushkara Rao Varanasi. "Reactive ion etching of fluorine containing photoresist". W SPIE 31st International Symposium on Advanced Lithography, redaktor Qinghuang Lin. SPIE, 2006. http://dx.doi.org/10.1117/12.656605.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Hartney, Mark A., Wayne M. Greene, Dennis W. Hess i David S. Soong. "Oxygen Reactive Ion Etching For Multilevel Lithography". W Microlithography Conference, redaktor Murrae J. Bowden. SPIE, 1987. http://dx.doi.org/10.1117/12.940343.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Abramo, M. T., E. B. Roy i S. M. LeCours. "Reactive ion etching for failure analysis applications". W 30th Annual Proceedings Reliability Physics 1992. IEEE, 1992. http://dx.doi.org/10.1109/relphy.1992.187663.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Abramo, Marsha T., Erica B. Roy i Steven M. LeCours. "Reactive Ion Etching for Failure Analysis Applications". W 30th International Reliability Physics Symposium. IEEE, 1992. http://dx.doi.org/10.1109/irps.1992.363312.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Reactive ion etching"

1

Zaidi, S. H. Random and Uniform Reactive Ion Etching Texturing of Si. Office of Scientific and Technical Information (OSTI), kwiecień 1999. http://dx.doi.org/10.2172/5938.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

ZAIDI, SALEEM H. Reactive Ion Etching for Randomly Distributed Texturing of Multicrystalline Silicon Solar Cells. Office of Scientific and Technical Information (OSTI), maj 2002. http://dx.doi.org/10.2172/800948.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Washington, Derwin. Reactive Ion Etching of PECVD Silicon Dioxide (SiO2) Layer for MEMS Application. Fort Belvoir, VA: Defense Technical Information Center, lipiec 2004. http://dx.doi.org/10.21236/ada425806.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Dems, B. C., i F. Rodriguez. The Role of Heat Transfer during Reactive-Ion Etching of Polymer Films. Fort Belvoir, VA: Defense Technical Information Center, maj 1990. http://dx.doi.org/10.21236/ada222072.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

McLane, George F., Paul Cooke i Robert P. Moerkirk. Magnetron Reactive Ion Etching of GaAs and AIGaAs in CH4/H2/Ar Plasmas. Fort Belvoir, VA: Defense Technical Information Center, maj 1996. http://dx.doi.org/10.21236/ada310955.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Scherer, Axel. Inductively Coupled Plasma Reactive Ion Etching (ICP-RIE): Nanofabrication Tool for High Resolution Pattern Transfer. Fort Belvoir, VA: Defense Technical Information Center, październik 2001. http://dx.doi.org/10.21236/ada396342.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Palmisiano, M. N., G. M. Peake, R. J. Shul, C. I. Ashby, J. G. Cederberg, M. J. Hafich i R. M. Biefeld. Inductively Coupled Plasma Reactive Ion Etching of AlGaAsSb and InGaAsSb for Quaternary Antimonide MIM Thermophotovoltaics. Office of Scientific and Technical Information (OSTI), październik 2002. http://dx.doi.org/10.2172/805334.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Lee, J. W., S. J. Pearton, C. R. Abernathy, G. A. Vawter, R. J. Shul, M. M. Bridges i C. L. Willison. In-situ monitoring of etch by-products during reactive ion beam etching of GaAs in chlorine/argon. Office of Scientific and Technical Information (OSTI), grudzień 1997. http://dx.doi.org/10.2172/292864.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii